Singularity aware de-homogenization for high-resolution topology optimized structures

Homogenization-based topology optimization has been shown to be effective but does not directly create mechanical structures. Instead, the method gives a multi-scale description of the optimized design, e.g., lamination thicknesses and directions. To obtain a realizable single-scale design, one can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2020-11, Vol.62 (5), p.2279-2295
Hauptverfasser: Stutz, F. C., Groen, J. P., Sigmund, O., Bærentzen, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2295
container_issue 5
container_start_page 2279
container_title Structural and multidisciplinary optimization
container_volume 62
creator Stutz, F. C.
Groen, J. P.
Sigmund, O.
Bærentzen, J. A.
description Homogenization-based topology optimization has been shown to be effective but does not directly create mechanical structures. Instead, the method gives a multi-scale description of the optimized design, e.g., lamination thicknesses and directions. To obtain a realizable single-scale design, one can perform a subsequent de-homogenization step. This is done by converting the lamination directions to integrable vector fields from which it is possible to compute a parameterization of the domain. Unfortunately, however, singularities often make it impossible to find integrable vector fields that align with lamination directions. We present a short introduction to homogenization-based topology optimization followed by an overview of different types of singularities and how they impinge on the problem. Based on this, we propose a singularity aware de-homogenization pipeline, where we use a method for vector field combing which produces consistent labeling of the lamination directions but also introduces necessary seams in the domain. We demonstrate how methods from computer graphics can subsequently be used to compute the final parameterization from which the mechanical structure can easily be extracted. We demonstrate the method on several test cases.
doi_str_mv 10.1007/s00158-020-02681-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471693910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471693910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a0721b1a8843bdd8da7f73027eedfa65a87281a9159ea5f99715dad9c039600b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZfiU5yuIXCB50wVvINmk3S7epSYrs_nrrVvTmYZhheN4ZeAi5RLhGAHYTALDgFFIYq-RIyyMywxILijnnx78zez8lZyFsAIBDLmZk-Wq7ZmiVt3GXqE_lTaINXbuta0xn9ypa1yW188naNmvqTXDtcNhF17vWNbvE9dFu7d7oJEQ_VHEYoXNyUqs2mIufPifL-7u3xSN9fnl4Wtw-0ypPRaQKWIorVJzn2UprrhWrWQYpM0bXqiwUZylHJbAQRhW1EAwLrbSoIBMlwCqbk6vpbu_dx2BClBs3-G58KdOcYSkygTBS6URV3oXgTS17b7fK7ySC_NYnJ31y1CcP-mQ5hrIpFEa4a4z_O_1P6gvOGnSZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471693910</pqid></control><display><type>article</type><title>Singularity aware de-homogenization for high-resolution topology optimized structures</title><source>SpringerNature Journals</source><creator>Stutz, F. C. ; Groen, J. P. ; Sigmund, O. ; Bærentzen, J. A.</creator><creatorcontrib>Stutz, F. C. ; Groen, J. P. ; Sigmund, O. ; Bærentzen, J. A.</creatorcontrib><description>Homogenization-based topology optimization has been shown to be effective but does not directly create mechanical structures. Instead, the method gives a multi-scale description of the optimized design, e.g., lamination thicknesses and directions. To obtain a realizable single-scale design, one can perform a subsequent de-homogenization step. This is done by converting the lamination directions to integrable vector fields from which it is possible to compute a parameterization of the domain. Unfortunately, however, singularities often make it impossible to find integrable vector fields that align with lamination directions. We present a short introduction to homogenization-based topology optimization followed by an overview of different types of singularities and how they impinge on the problem. Based on this, we propose a singularity aware de-homogenization pipeline, where we use a method for vector field combing which produces consistent labeling of the lamination directions but also introduces necessary seams in the domain. We demonstrate how methods from computer graphics can subsequently be used to compute the final parameterization from which the mechanical structure can easily be extracted. We demonstrate the method on several test cases.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02681-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer graphics ; Design optimization ; Domains ; Engineering ; Engineering Design ; Fields (mathematics) ; Homogenization ; Parameterization ; Research Paper ; Singularity (mathematics) ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2020-11, Vol.62 (5), p.2279-2295</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a0721b1a8843bdd8da7f73027eedfa65a87281a9159ea5f99715dad9c039600b3</citedby><cites>FETCH-LOGICAL-c429t-a0721b1a8843bdd8da7f73027eedfa65a87281a9159ea5f99715dad9c039600b3</cites><orcidid>0000-0001-6312-7410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02681-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02681-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Stutz, F. C.</creatorcontrib><creatorcontrib>Groen, J. P.</creatorcontrib><creatorcontrib>Sigmund, O.</creatorcontrib><creatorcontrib>Bærentzen, J. A.</creatorcontrib><title>Singularity aware de-homogenization for high-resolution topology optimized structures</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Homogenization-based topology optimization has been shown to be effective but does not directly create mechanical structures. Instead, the method gives a multi-scale description of the optimized design, e.g., lamination thicknesses and directions. To obtain a realizable single-scale design, one can perform a subsequent de-homogenization step. This is done by converting the lamination directions to integrable vector fields from which it is possible to compute a parameterization of the domain. Unfortunately, however, singularities often make it impossible to find integrable vector fields that align with lamination directions. We present a short introduction to homogenization-based topology optimization followed by an overview of different types of singularities and how they impinge on the problem. Based on this, we propose a singularity aware de-homogenization pipeline, where we use a method for vector field combing which produces consistent labeling of the lamination directions but also introduces necessary seams in the domain. We demonstrate how methods from computer graphics can subsequently be used to compute the final parameterization from which the mechanical structure can easily be extracted. We demonstrate the method on several test cases.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer graphics</subject><subject>Design optimization</subject><subject>Domains</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fields (mathematics)</subject><subject>Homogenization</subject><subject>Parameterization</subject><subject>Research Paper</subject><subject>Singularity (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZfiU5yuIXCB50wVvINmk3S7epSYrs_nrrVvTmYZhheN4ZeAi5RLhGAHYTALDgFFIYq-RIyyMywxILijnnx78zez8lZyFsAIBDLmZk-Wq7ZmiVt3GXqE_lTaINXbuta0xn9ypa1yW188naNmvqTXDtcNhF17vWNbvE9dFu7d7oJEQ_VHEYoXNyUqs2mIufPifL-7u3xSN9fnl4Wtw-0ypPRaQKWIorVJzn2UprrhWrWQYpM0bXqiwUZylHJbAQRhW1EAwLrbSoIBMlwCqbk6vpbu_dx2BClBs3-G58KdOcYSkygTBS6URV3oXgTS17b7fK7ySC_NYnJ31y1CcP-mQ5hrIpFEa4a4z_O_1P6gvOGnSZ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Stutz, F. C.</creator><creator>Groen, J. P.</creator><creator>Sigmund, O.</creator><creator>Bærentzen, J. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6312-7410</orcidid></search><sort><creationdate>20201101</creationdate><title>Singularity aware de-homogenization for high-resolution topology optimized structures</title><author>Stutz, F. C. ; Groen, J. P. ; Sigmund, O. ; Bærentzen, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a0721b1a8843bdd8da7f73027eedfa65a87281a9159ea5f99715dad9c039600b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer graphics</topic><topic>Design optimization</topic><topic>Domains</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fields (mathematics)</topic><topic>Homogenization</topic><topic>Parameterization</topic><topic>Research Paper</topic><topic>Singularity (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stutz, F. C.</creatorcontrib><creatorcontrib>Groen, J. P.</creatorcontrib><creatorcontrib>Sigmund, O.</creatorcontrib><creatorcontrib>Bærentzen, J. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stutz, F. C.</au><au>Groen, J. P.</au><au>Sigmund, O.</au><au>Bærentzen, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularity aware de-homogenization for high-resolution topology optimized structures</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>62</volume><issue>5</issue><spage>2279</spage><epage>2295</epage><pages>2279-2295</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Homogenization-based topology optimization has been shown to be effective but does not directly create mechanical structures. Instead, the method gives a multi-scale description of the optimized design, e.g., lamination thicknesses and directions. To obtain a realizable single-scale design, one can perform a subsequent de-homogenization step. This is done by converting the lamination directions to integrable vector fields from which it is possible to compute a parameterization of the domain. Unfortunately, however, singularities often make it impossible to find integrable vector fields that align with lamination directions. We present a short introduction to homogenization-based topology optimization followed by an overview of different types of singularities and how they impinge on the problem. Based on this, we propose a singularity aware de-homogenization pipeline, where we use a method for vector field combing which produces consistent labeling of the lamination directions but also introduces necessary seams in the domain. We demonstrate how methods from computer graphics can subsequently be used to compute the final parameterization from which the mechanical structure can easily be extracted. We demonstrate the method on several test cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02681-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6312-7410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2020-11, Vol.62 (5), p.2279-2295
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2471693910
source SpringerNature Journals
subjects Computational Mathematics and Numerical Analysis
Computer graphics
Design optimization
Domains
Engineering
Engineering Design
Fields (mathematics)
Homogenization
Parameterization
Research Paper
Singularity (mathematics)
Theoretical and Applied Mechanics
Topology optimization
title Singularity aware de-homogenization for high-resolution topology optimized structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularity%20aware%20de-homogenization%20for%20high-resolution%20topology%20optimized%20structures&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Stutz,%20F.%20C.&rft.date=2020-11-01&rft.volume=62&rft.issue=5&rft.spage=2279&rft.epage=2295&rft.pages=2279-2295&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02681-6&rft_dat=%3Cproquest_cross%3E2471693910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471693910&rft_id=info:pmid/&rfr_iscdi=true