A Thermo-mechanical gradient enhanced damage method for fracture
In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effe...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2020-12, Vol.66 (6), p.1399-1426 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1426 |
---|---|
container_issue | 6 |
container_start_page | 1399 |
container_title | Computational mechanics |
container_volume | 66 |
creator | Sarkar, Subrato Singh, I. V. Mishra, B. K. |
description | In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement (
u
), micro-equivalent strain (
ē
) and temperature (
θ
), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding. |
doi_str_mv | 10.1007/s00466-020-01908-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471693797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642125920</galeid><sourcerecordid>A642125920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK7-AU8FTx6yTpKmSW8u4hcIgh_nkE2m3cq2XZMu6P56oxVkL5KBwPA8MwMvIacMZgxAXUSAvCgocKDAStB0u0cmLBecQsnzfTIBpjRVhZKH5CjGNwAmtZATcjnPXpYY2p626Ja2a5xdZXWwvsFuyLBLLYc-87a1NWYtDsveZ1UfsipYN2wCHpODyq4invz-U_J6c_1ydUcfHm_vr-YP1ImSD7RQlRaa6VxaoRbayUJ75jTIhYbCyrJyC9S5tamE4Ex76XjppYW03XPBxJScjXPXoX_fYBzMW78JXVppeK5YUQpVqkTNRqq2KzRNV_VDujM9j23j-g6rJvXnRc4ZlyWHJJzvCIkZ8GOo7SZGc__8tMvykXWhjzFgZdahaW34NAzMdwxmjMGkGMxPDGabJDFKMcFdjeHv7n-sLxytiPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471693797</pqid></control><display><type>article</type><title>A Thermo-mechanical gradient enhanced damage method for fracture</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sarkar, Subrato ; Singh, I. V. ; Mishra, B. K.</creator><creatorcontrib>Sarkar, Subrato ; Singh, I. V. ; Mishra, B. K.</creatorcontrib><description>In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement (
u
), micro-equivalent strain (
ē
) and temperature (
θ
), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-020-01908-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Damage localization ; Engineering ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2020-12, Vol.66 (6), p.1399-1426</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</citedby><cites>FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-020-01908-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-020-01908-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sarkar, Subrato</creatorcontrib><creatorcontrib>Singh, I. V.</creatorcontrib><creatorcontrib>Mishra, B. K.</creatorcontrib><title>A Thermo-mechanical gradient enhanced damage method for fracture</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement (
u
), micro-equivalent strain (
ē
) and temperature (
θ
), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Damage localization</subject><subject>Engineering</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhoMouK7-AU8FTx6yTpKmSW8u4hcIgh_nkE2m3cq2XZMu6P56oxVkL5KBwPA8MwMvIacMZgxAXUSAvCgocKDAStB0u0cmLBecQsnzfTIBpjRVhZKH5CjGNwAmtZATcjnPXpYY2p626Ja2a5xdZXWwvsFuyLBLLYc-87a1NWYtDsveZ1UfsipYN2wCHpODyq4invz-U_J6c_1ydUcfHm_vr-YP1ImSD7RQlRaa6VxaoRbayUJ75jTIhYbCyrJyC9S5tamE4Ex76XjppYW03XPBxJScjXPXoX_fYBzMW78JXVppeK5YUQpVqkTNRqq2KzRNV_VDujM9j23j-g6rJvXnRc4ZlyWHJJzvCIkZ8GOo7SZGc__8tMvykXWhjzFgZdahaW34NAzMdwxmjMGkGMxPDGabJDFKMcFdjeHv7n-sLxytiPc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Sarkar, Subrato</creator><creator>Singh, I. V.</creator><creator>Mishra, B. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201201</creationdate><title>A Thermo-mechanical gradient enhanced damage method for fracture</title><author>Sarkar, Subrato ; Singh, I. V. ; Mishra, B. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Damage localization</topic><topic>Engineering</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Subrato</creatorcontrib><creatorcontrib>Singh, I. V.</creatorcontrib><creatorcontrib>Mishra, B. K.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Subrato</au><au>Singh, I. V.</au><au>Mishra, B. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Thermo-mechanical gradient enhanced damage method for fracture</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>6</issue><spage>1399</spage><epage>1426</epage><pages>1399-1426</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement (
u
), micro-equivalent strain (
ē
) and temperature (
θ
), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-020-01908-z</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2020-12, Vol.66 (6), p.1399-1426 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2471693797 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Continuum Physics Computational Science and Engineering Damage localization Engineering Original Paper Theoretical and Applied Mechanics |
title | A Thermo-mechanical gradient enhanced damage method for fracture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Thermo-mechanical%20gradient%20enhanced%20damage%20method%20for%20fracture&rft.jtitle=Computational%20mechanics&rft.au=Sarkar,%20Subrato&rft.date=2020-12-01&rft.volume=66&rft.issue=6&rft.spage=1399&rft.epage=1426&rft.pages=1399-1426&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-020-01908-z&rft_dat=%3Cgale_proqu%3EA642125920%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471693797&rft_id=info:pmid/&rft_galeid=A642125920&rfr_iscdi=true |