A Thermo-mechanical gradient enhanced damage method for fracture

In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2020-12, Vol.66 (6), p.1399-1426
Hauptverfasser: Sarkar, Subrato, Singh, I. V., Mishra, B. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1426
container_issue 6
container_start_page 1399
container_title Computational mechanics
container_volume 66
creator Sarkar, Subrato
Singh, I. V.
Mishra, B. K.
description In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement ( u ), micro-equivalent strain ( ē ) and temperature ( θ ), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.
doi_str_mv 10.1007/s00466-020-01908-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471693797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642125920</galeid><sourcerecordid>A642125920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK7-AU8FTx6yTpKmSW8u4hcIgh_nkE2m3cq2XZMu6P56oxVkL5KBwPA8MwMvIacMZgxAXUSAvCgocKDAStB0u0cmLBecQsnzfTIBpjRVhZKH5CjGNwAmtZATcjnPXpYY2p626Ja2a5xdZXWwvsFuyLBLLYc-87a1NWYtDsveZ1UfsipYN2wCHpODyq4invz-U_J6c_1ydUcfHm_vr-YP1ImSD7RQlRaa6VxaoRbayUJ75jTIhYbCyrJyC9S5tamE4Ex76XjppYW03XPBxJScjXPXoX_fYBzMW78JXVppeK5YUQpVqkTNRqq2KzRNV_VDujM9j23j-g6rJvXnRc4ZlyWHJJzvCIkZ8GOo7SZGc__8tMvykXWhjzFgZdahaW34NAzMdwxmjMGkGMxPDGabJDFKMcFdjeHv7n-sLxytiPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471693797</pqid></control><display><type>article</type><title>A Thermo-mechanical gradient enhanced damage method for fracture</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sarkar, Subrato ; Singh, I. V. ; Mishra, B. K.</creator><creatorcontrib>Sarkar, Subrato ; Singh, I. V. ; Mishra, B. K.</creatorcontrib><description>In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement ( u ), micro-equivalent strain ( ē ) and temperature ( θ ), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-020-01908-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Damage localization ; Engineering ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2020-12, Vol.66 (6), p.1399-1426</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</citedby><cites>FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-020-01908-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-020-01908-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sarkar, Subrato</creatorcontrib><creatorcontrib>Singh, I. V.</creatorcontrib><creatorcontrib>Mishra, B. K.</creatorcontrib><title>A Thermo-mechanical gradient enhanced damage method for fracture</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement ( u ), micro-equivalent strain ( ē ) and temperature ( θ ), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Damage localization</subject><subject>Engineering</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhoMouK7-AU8FTx6yTpKmSW8u4hcIgh_nkE2m3cq2XZMu6P56oxVkL5KBwPA8MwMvIacMZgxAXUSAvCgocKDAStB0u0cmLBecQsnzfTIBpjRVhZKH5CjGNwAmtZATcjnPXpYY2p626Ja2a5xdZXWwvsFuyLBLLYc-87a1NWYtDsveZ1UfsipYN2wCHpODyq4invz-U_J6c_1ydUcfHm_vr-YP1ImSD7RQlRaa6VxaoRbayUJ75jTIhYbCyrJyC9S5tamE4Ex76XjppYW03XPBxJScjXPXoX_fYBzMW78JXVppeK5YUQpVqkTNRqq2KzRNV_VDujM9j23j-g6rJvXnRc4ZlyWHJJzvCIkZ8GOo7SZGc__8tMvykXWhjzFgZdahaW34NAzMdwxmjMGkGMxPDGabJDFKMcFdjeHv7n-sLxytiPc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Sarkar, Subrato</creator><creator>Singh, I. V.</creator><creator>Mishra, B. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201201</creationdate><title>A Thermo-mechanical gradient enhanced damage method for fracture</title><author>Sarkar, Subrato ; Singh, I. V. ; Mishra, B. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-67f8381845a37b8c568d1c805b806a59fcbe84aa4aa33218d5c29d5a0cedd2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Damage localization</topic><topic>Engineering</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Subrato</creatorcontrib><creatorcontrib>Singh, I. V.</creatorcontrib><creatorcontrib>Mishra, B. K.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Subrato</au><au>Singh, I. V.</au><au>Mishra, B. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Thermo-mechanical gradient enhanced damage method for fracture</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>6</issue><spage>1399</spage><epage>1426</epage><pages>1399-1426</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>In this work, a new thermo-mechanical formulation for the conventional and localizing gradient damage method is proposed. The proposed formulation is based on the generalized micromorphic theory, which accounts for the underlying fracture processes at the micro-level. The thermal and mechanical effects on the fracture response are incorporated in the formulation through three primary variables. These variables are displacement ( u ), micro-equivalent strain ( ē ) and temperature ( θ ), which are strongly/weakly coupled. In addition to mechanical loading, steady-state and transient heat transfers are considered in the formulation. Several 1D and 2D numerical examples are solved using the formulation to demonstrate its accuracy and effectiveness in simulating thermo-mechanical fracture. In the numerical examples, different types of thermal and mechanical loads are considered to study various effects on the fracture response of the components. Moreover, a detailed description of the formulation and its numerical implementation is presented for a better understanding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-020-01908-z</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2020-12, Vol.66 (6), p.1399-1426
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2471693797
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Computational Science and Engineering
Damage localization
Engineering
Original Paper
Theoretical and Applied Mechanics
title A Thermo-mechanical gradient enhanced damage method for fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Thermo-mechanical%20gradient%20enhanced%20damage%20method%20for%20fracture&rft.jtitle=Computational%20mechanics&rft.au=Sarkar,%20Subrato&rft.date=2020-12-01&rft.volume=66&rft.issue=6&rft.spage=1399&rft.epage=1426&rft.pages=1399-1426&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-020-01908-z&rft_dat=%3Cgale_proqu%3EA642125920%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471693797&rft_id=info:pmid/&rft_galeid=A642125920&rfr_iscdi=true