Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension

A theory is developed of the electrophoresis of a spherical colloidal particle with a slip surface in a concentrated suspension on the basis of Kuwabara’s cell model. We introduce the slipping length on the particle surface, which is the measure of the particle surface hydrophobicity. We derive the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2020-12, Vol.298 (12), p.1679-1684
1. Verfasser: Ohshima, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1684
container_issue 12
container_start_page 1679
container_title Colloid and polymer science
container_volume 298
creator Ohshima, Hiroyuki
description A theory is developed of the electrophoresis of a spherical colloidal particle with a slip surface in a concentrated suspension on the basis of Kuwabara’s cell model. We introduce the slipping length on the particle surface, which is the measure of the particle surface hydrophobicity. We derive the general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential. Expressions for other electrokinetics, that is, electrical conductivity, sedimentation velocity, and potential in concentrated suspensions, are also derived. Furthermore, it is shown that as in the case of a dilute suspension, a similarity is found between the electrokinetics of charged spherical solid particles with a slip surface in a concentrated suspension and that for liquid drops. Graphical abstract Electrophoretic mobility of a sphere with a slip surface in a concentrated suspension
doi_str_mv 10.1007/s00396-020-04755-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471693749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471693749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f479b9952f713fad552ab9db914d3c6df071f40fe41d8be332ab968583f442263</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC5-jkuc1RSn2A4EXBW8hmE5u6JmuyRfz2plbw5mmG-T8GfgidE7gkAO1VAWBKYqCAgbdCYHWAZoQzgYlg8hDNgAHDHOjLMTopZQMAXEk5Q2Y1ODvl9Baim4ItTfJNGdcuB2uGxqZhSKGv22hylQdXms8wrRvTlCGMTdlmb6xrQqwXm6J1ccpmcn1VyuhiCSmeoiNvhuLOfuccPd-snpZ3-OHx9n55_YAtE3LCnreqU0pQ3xLmTS8ENZ3qO0V4z6zsPbTEc_COk37ROcZ2slyIBfOcUyrZHF3se8ecPrauTHqTtjnWl5rylkjFWq6qi-5dNqdSsvN6zOHd5C9NQO9Q6j1KXVHqH5R6F2L7UKnm-OryX_U_qW8863gL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471693749</pqid></control><display><type>article</type><title>Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension</title><source>Springer Journals</source><creator>Ohshima, Hiroyuki</creator><creatorcontrib>Ohshima, Hiroyuki</creatorcontrib><description>A theory is developed of the electrophoresis of a spherical colloidal particle with a slip surface in a concentrated suspension on the basis of Kuwabara’s cell model. We introduce the slipping length on the particle surface, which is the measure of the particle surface hydrophobicity. We derive the general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential. Expressions for other electrokinetics, that is, electrical conductivity, sedimentation velocity, and potential in concentrated suspensions, are also derived. Furthermore, it is shown that as in the case of a dilute suspension, a similarity is found between the electrokinetics of charged spherical solid particles with a slip surface in a concentrated suspension and that for liquid drops. Graphical abstract Electrophoretic mobility of a sphere with a slip surface in a concentrated suspension</description><identifier>ISSN: 0303-402X</identifier><identifier>EISSN: 1435-1536</identifier><identifier>DOI: 10.1007/s00396-020-04755-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Drops (liquids) ; Electrical resistivity ; Electrokinetics ; Electrophoresis ; Food Science ; Hydrophobicity ; Nanotechnology and Microengineering ; Original Contribution ; Physical Chemistry ; Polymer Sciences ; Sedimentation ; Slip ; Soft and Granular Matter ; Zeta potential</subject><ispartof>Colloid and polymer science, 2020-12, Vol.298 (12), p.1679-1684</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f479b9952f713fad552ab9db914d3c6df071f40fe41d8be332ab968583f442263</citedby><cites>FETCH-LOGICAL-c356t-f479b9952f713fad552ab9db914d3c6df071f40fe41d8be332ab968583f442263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00396-020-04755-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00396-020-04755-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ohshima, Hiroyuki</creatorcontrib><title>Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension</title><title>Colloid and polymer science</title><addtitle>Colloid Polym Sci</addtitle><description>A theory is developed of the electrophoresis of a spherical colloidal particle with a slip surface in a concentrated suspension on the basis of Kuwabara’s cell model. We introduce the slipping length on the particle surface, which is the measure of the particle surface hydrophobicity. We derive the general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential. Expressions for other electrokinetics, that is, electrical conductivity, sedimentation velocity, and potential in concentrated suspensions, are also derived. Furthermore, it is shown that as in the case of a dilute suspension, a similarity is found between the electrokinetics of charged spherical solid particles with a slip surface in a concentrated suspension and that for liquid drops. Graphical abstract Electrophoretic mobility of a sphere with a slip surface in a concentrated suspension</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Drops (liquids)</subject><subject>Electrical resistivity</subject><subject>Electrokinetics</subject><subject>Electrophoresis</subject><subject>Food Science</subject><subject>Hydrophobicity</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Contribution</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Sedimentation</subject><subject>Slip</subject><subject>Soft and Granular Matter</subject><subject>Zeta potential</subject><issn>0303-402X</issn><issn>1435-1536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwNOC5-jkuc1RSn2A4EXBW8hmE5u6JmuyRfz2plbw5mmG-T8GfgidE7gkAO1VAWBKYqCAgbdCYHWAZoQzgYlg8hDNgAHDHOjLMTopZQMAXEk5Q2Y1ODvl9Baim4ItTfJNGdcuB2uGxqZhSKGv22hylQdXms8wrRvTlCGMTdlmb6xrQqwXm6J1ccpmcn1VyuhiCSmeoiNvhuLOfuccPd-snpZ3-OHx9n55_YAtE3LCnreqU0pQ3xLmTS8ENZ3qO0V4z6zsPbTEc_COk37ROcZ2slyIBfOcUyrZHF3se8ecPrauTHqTtjnWl5rylkjFWq6qi-5dNqdSsvN6zOHd5C9NQO9Q6j1KXVHqH5R6F2L7UKnm-OryX_U_qW8863gL</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ohshima, Hiroyuki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201201</creationdate><title>Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension</title><author>Ohshima, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f479b9952f713fad552ab9db914d3c6df071f40fe41d8be332ab968583f442263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Drops (liquids)</topic><topic>Electrical resistivity</topic><topic>Electrokinetics</topic><topic>Electrophoresis</topic><topic>Food Science</topic><topic>Hydrophobicity</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Contribution</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Sedimentation</topic><topic>Slip</topic><topic>Soft and Granular Matter</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohshima, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Colloid and polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohshima, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension</atitle><jtitle>Colloid and polymer science</jtitle><stitle>Colloid Polym Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>298</volume><issue>12</issue><spage>1679</spage><epage>1684</epage><pages>1679-1684</pages><issn>0303-402X</issn><eissn>1435-1536</eissn><abstract>A theory is developed of the electrophoresis of a spherical colloidal particle with a slip surface in a concentrated suspension on the basis of Kuwabara’s cell model. We introduce the slipping length on the particle surface, which is the measure of the particle surface hydrophobicity. We derive the general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential. Expressions for other electrokinetics, that is, electrical conductivity, sedimentation velocity, and potential in concentrated suspensions, are also derived. Furthermore, it is shown that as in the case of a dilute suspension, a similarity is found between the electrokinetics of charged spherical solid particles with a slip surface in a concentrated suspension and that for liquid drops. Graphical abstract Electrophoretic mobility of a sphere with a slip surface in a concentrated suspension</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00396-020-04755-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-402X
ispartof Colloid and polymer science, 2020-12, Vol.298 (12), p.1679-1684
issn 0303-402X
1435-1536
language eng
recordid cdi_proquest_journals_2471693749
source Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Drops (liquids)
Electrical resistivity
Electrokinetics
Electrophoresis
Food Science
Hydrophobicity
Nanotechnology and Microengineering
Original Contribution
Physical Chemistry
Polymer Sciences
Sedimentation
Slip
Soft and Granular Matter
Zeta potential
title Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrokinetics%20of%20spherical%20colloidal%20particles%20with%20a%20slip%20surface%20in%20a%20concentrated%20suspension&rft.jtitle=Colloid%20and%20polymer%20science&rft.au=Ohshima,%20Hiroyuki&rft.date=2020-12-01&rft.volume=298&rft.issue=12&rft.spage=1679&rft.epage=1684&rft.pages=1679-1684&rft.issn=0303-402X&rft.eissn=1435-1536&rft_id=info:doi/10.1007/s00396-020-04755-9&rft_dat=%3Cproquest_cross%3E2471693749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471693749&rft_id=info:pmid/&rfr_iscdi=true