An advanced shell model for the analysis of geometrical and material nonlinear shells

In this paper layered shells subjected to static loading are considered. The displacements of the Reissner–Mindlin theory are enriched by a an additional part. These so-called fluctuation displacements include warping displacements and thickness changes. They lead to additional terms for the materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2020-12, Vol.66 (6), p.1353-1376
Hauptverfasser: Gruttmann, F., Wagner, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1376
container_issue 6
container_start_page 1353
container_title Computational mechanics
container_volume 66
creator Gruttmann, F.
Wagner, W.
description In this paper layered shells subjected to static loading are considered. The displacements of the Reissner–Mindlin theory are enriched by a an additional part. These so-called fluctuation displacements include warping displacements and thickness changes. They lead to additional terms for the material deformation gradient and the Green–Lagrangian strain tensor. Within a nonlinear multi-field variational formulation the weak form of the boundary value problem accounts for the equilibrium of stress resultants and couple resultants, the local equilibrium of stresses, the geometrical field equations and the constitutive equations. For the independent shell strains an ansatz with quadratic shape functions is chosen. This leads to a significant improved convergence behaviour especially for distorted meshes. Elimination of a set of parameters on element level by static condensation yields an element stiffness matrix and residual vector of a quadrilateral shell element with the usual 5 or 6 nodal degrees of freedom. The developed model yields the complicated three-dimensional stress state in layered shells for elasticity and elasto-plasticity considering geometrical nonlinearity. In comparison with fully 3D solutions present 2D shell model requires only a fractional amount of computing time.
doi_str_mv 10.1007/s00466-020-01905-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471693242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642125915</galeid><sourcerecordid>A642125915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e19b4a5bfe27e8756c4f364e8d4acc05ca6adb029bae7c01b0ecacfd568ac4653</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVJoZu0f6AnQU85OBnJkmwfl5CkgUCgbc5iLI82DraUSt6Q_Ptq60LJJadhHt97PHiMfRVwJgCa8wygjKlAQgWiA13JD2wjVC0r6KQ6YhsQTVs1ptGf2HHOjwBCt7XesPtt4Dg8Y3A08PxA08TnONDEfUx8eSCOAafXPGYePd9RnGlJo8Op6AOfcaE0lifEMI2BMK0R-TP76HHK9OXfPWH3V5e_Lr5Xt3fXNxfb28qp2iwVia5XqHtPsqG20cYpXxtF7aDQOdAODQ49yK5HahyIHsih84M2LTpldH3Cvq25Tyn-3lNe7GPcp9I4W6kaYbpaKlmos5Xa4UR2DD4uCUsQDjSPLgbyY9G3RkkhdScOsadvDIVZ6GXZ4T5ne_Pzx1tWrqxLMedE3j6lccb0agXYwzZ23caWbezfbeyhUb2acoHDjtL_3u-4_gAHJpF9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471693242</pqid></control><display><type>article</type><title>An advanced shell model for the analysis of geometrical and material nonlinear shells</title><source>SpringerLink Journals</source><creator>Gruttmann, F. ; Wagner, W.</creator><creatorcontrib>Gruttmann, F. ; Wagner, W.</creatorcontrib><description>In this paper layered shells subjected to static loading are considered. The displacements of the Reissner–Mindlin theory are enriched by a an additional part. These so-called fluctuation displacements include warping displacements and thickness changes. They lead to additional terms for the material deformation gradient and the Green–Lagrangian strain tensor. Within a nonlinear multi-field variational formulation the weak form of the boundary value problem accounts for the equilibrium of stress resultants and couple resultants, the local equilibrium of stresses, the geometrical field equations and the constitutive equations. For the independent shell strains an ansatz with quadratic shape functions is chosen. This leads to a significant improved convergence behaviour especially for distorted meshes. Elimination of a set of parameters on element level by static condensation yields an element stiffness matrix and residual vector of a quadrilateral shell element with the usual 5 or 6 nodal degrees of freedom. The developed model yields the complicated three-dimensional stress state in layered shells for elasticity and elasto-plasticity considering geometrical nonlinearity. In comparison with fully 3D solutions present 2D shell model requires only a fractional amount of computing time.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-020-01905-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary value problems ; Classical and Continuum Physics ; Computational Science and Engineering ; Computing time ; Condensates ; Constitutive equations ; Constitutive relationships ; Deformation ; Displacement ; Elastoplasticity ; Engineering ; Mathematical models ; Matrix algebra ; Matrix methods ; Mindlin plates ; Nonlinearity ; Original Paper ; Quadrilaterals ; Resultants ; Shape functions ; Shells ; Stiffness matrix ; Tensors ; Theoretical and Applied Mechanics ; Three dimensional models ; Two dimensional models</subject><ispartof>Computational mechanics, 2020-12, Vol.66 (6), p.1353-1376</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e19b4a5bfe27e8756c4f364e8d4acc05ca6adb029bae7c01b0ecacfd568ac4653</citedby><cites>FETCH-LOGICAL-c436t-e19b4a5bfe27e8756c4f364e8d4acc05ca6adb029bae7c01b0ecacfd568ac4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-020-01905-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-020-01905-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gruttmann, F.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><title>An advanced shell model for the analysis of geometrical and material nonlinear shells</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>In this paper layered shells subjected to static loading are considered. The displacements of the Reissner–Mindlin theory are enriched by a an additional part. These so-called fluctuation displacements include warping displacements and thickness changes. They lead to additional terms for the material deformation gradient and the Green–Lagrangian strain tensor. Within a nonlinear multi-field variational formulation the weak form of the boundary value problem accounts for the equilibrium of stress resultants and couple resultants, the local equilibrium of stresses, the geometrical field equations and the constitutive equations. For the independent shell strains an ansatz with quadratic shape functions is chosen. This leads to a significant improved convergence behaviour especially for distorted meshes. Elimination of a set of parameters on element level by static condensation yields an element stiffness matrix and residual vector of a quadrilateral shell element with the usual 5 or 6 nodal degrees of freedom. The developed model yields the complicated three-dimensional stress state in layered shells for elasticity and elasto-plasticity considering geometrical nonlinearity. In comparison with fully 3D solutions present 2D shell model requires only a fractional amount of computing time.</description><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computing time</subject><subject>Condensates</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Elastoplasticity</subject><subject>Engineering</subject><subject>Mathematical models</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Mindlin plates</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Quadrilaterals</subject><subject>Resultants</subject><subject>Shape functions</subject><subject>Shells</subject><subject>Stiffness matrix</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUFr3DAQhUVJoZu0f6AnQU85OBnJkmwfl5CkgUCgbc5iLI82DraUSt6Q_Ptq60LJJadhHt97PHiMfRVwJgCa8wygjKlAQgWiA13JD2wjVC0r6KQ6YhsQTVs1ptGf2HHOjwBCt7XesPtt4Dg8Y3A08PxA08TnONDEfUx8eSCOAafXPGYePd9RnGlJo8Op6AOfcaE0lifEMI2BMK0R-TP76HHK9OXfPWH3V5e_Lr5Xt3fXNxfb28qp2iwVia5XqHtPsqG20cYpXxtF7aDQOdAODQ49yK5HahyIHsih84M2LTpldH3Cvq25Tyn-3lNe7GPcp9I4W6kaYbpaKlmos5Xa4UR2DD4uCUsQDjSPLgbyY9G3RkkhdScOsadvDIVZ6GXZ4T5ne_Pzx1tWrqxLMedE3j6lccb0agXYwzZ23caWbezfbeyhUb2acoHDjtL_3u-4_gAHJpF9</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gruttmann, F.</creator><creator>Wagner, W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201201</creationdate><title>An advanced shell model for the analysis of geometrical and material nonlinear shells</title><author>Gruttmann, F. ; Wagner, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e19b4a5bfe27e8756c4f364e8d4acc05ca6adb029bae7c01b0ecacfd568ac4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computing time</topic><topic>Condensates</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Elastoplasticity</topic><topic>Engineering</topic><topic>Mathematical models</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Mindlin plates</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Quadrilaterals</topic><topic>Resultants</topic><topic>Shape functions</topic><topic>Shells</topic><topic>Stiffness matrix</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruttmann, F.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruttmann, F.</au><au>Wagner, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An advanced shell model for the analysis of geometrical and material nonlinear shells</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>6</issue><spage>1353</spage><epage>1376</epage><pages>1353-1376</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>In this paper layered shells subjected to static loading are considered. The displacements of the Reissner–Mindlin theory are enriched by a an additional part. These so-called fluctuation displacements include warping displacements and thickness changes. They lead to additional terms for the material deformation gradient and the Green–Lagrangian strain tensor. Within a nonlinear multi-field variational formulation the weak form of the boundary value problem accounts for the equilibrium of stress resultants and couple resultants, the local equilibrium of stresses, the geometrical field equations and the constitutive equations. For the independent shell strains an ansatz with quadratic shape functions is chosen. This leads to a significant improved convergence behaviour especially for distorted meshes. Elimination of a set of parameters on element level by static condensation yields an element stiffness matrix and residual vector of a quadrilateral shell element with the usual 5 or 6 nodal degrees of freedom. The developed model yields the complicated three-dimensional stress state in layered shells for elasticity and elasto-plasticity considering geometrical nonlinearity. In comparison with fully 3D solutions present 2D shell model requires only a fractional amount of computing time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-020-01905-2</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2020-12, Vol.66 (6), p.1353-1376
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2471693242
source SpringerLink Journals
subjects Boundary value problems
Classical and Continuum Physics
Computational Science and Engineering
Computing time
Condensates
Constitutive equations
Constitutive relationships
Deformation
Displacement
Elastoplasticity
Engineering
Mathematical models
Matrix algebra
Matrix methods
Mindlin plates
Nonlinearity
Original Paper
Quadrilaterals
Resultants
Shape functions
Shells
Stiffness matrix
Tensors
Theoretical and Applied Mechanics
Three dimensional models
Two dimensional models
title An advanced shell model for the analysis of geometrical and material nonlinear shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20advanced%20shell%20model%20for%20the%20analysis%20of%20geometrical%20and%20material%20nonlinear%20shells&rft.jtitle=Computational%20mechanics&rft.au=Gruttmann,%20F.&rft.date=2020-12-01&rft.volume=66&rft.issue=6&rft.spage=1353&rft.epage=1376&rft.pages=1353-1376&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-020-01905-2&rft_dat=%3Cgale_proqu%3EA642125915%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471693242&rft_id=info:pmid/&rft_galeid=A642125915&rfr_iscdi=true