Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review
Torrefaction of biomass materials has received a tremendous attention over the years due to its ability to produce a high-grade solid biofuel with enhanced durability, excellent grindability, higher bulk density and calorific value, and greater energy density, as compared to the original untreated b...
Gespeichert in:
Veröffentlicht in: | Bioenergy research 2020-12, Vol.13 (4), p.999-1015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1015 |
---|---|
container_issue | 4 |
container_start_page | 999 |
container_title | Bioenergy research |
container_volume | 13 |
creator | Olugbade, Temitope Olumide Ojo, Oluwole Timothy |
description | Torrefaction of biomass materials has received a tremendous attention over the years due to its ability to produce a high-grade solid biofuel with enhanced durability, excellent grindability, higher bulk density and calorific value, and greater energy density, as compared to the original untreated biomass material. It is a mild pyrolysis treatment technology under inert atmosphere which can improve the chemical and physical properties of raw biomass through the elimination of oxygen, reduction of moisture content, and change of chemical compositions. When raw biomass is mildly pyrolyzed in a default-oxygen or N
2
atmosphere at moderate temperatures, the properties of raw biomass including low calorific value, hydrogen-carbon ratio, hygroscopicity, and grindability can be significantly enhanced. In the present review, the operating mechanism of different torrefaction processes including wet, dry, and ionic-liquid-assisted torrefaction is analyzed and discussed. More importantly, the reactor design for commercialization purpose, reaction kinetics and mechanism, economics, and sustainability of biomass torrefaction is discussed in detail. This review is extended to the torrefaction of agro-residue biomass since torrefied agro-residue-based pellets can be produced from agro-residues. The various technological applications of biomass torrefaction are also reviewed and the prospects in ensuring the continuous production of high-grade fuels are summarized. |
doi_str_mv | 10.1007/s12155-020-10138-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471685997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712242361</galeid><sourcerecordid>A712242361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-a336d6a559fc617fcd0825508c8c7b5672f92c30ea4f91f37009cb45cf86eb063</originalsourceid><addsrcrecordid>eNp9kcFKAzEQhhdRsFZfwFPA8-ok2WQ33mrRVigqWs8hzSZtSrupyVbx7Y2uWASROcww_N_MMH-WnWI4xwDlRcQEM5YDgRwDplVO97IeFlTkmBRk_6emxWF2FOMSgEMBopfdXTm_VjGiqQ_BWKVb5xtkfUDtwqCH4Ott1_IWjd18kY-Cqg168itXo8TarVnFS6TQo3l15u04O7BqFc3Jd-5nzzfX0-E4n9yPboeDSa6LSrS5opTXXDEmrOa4tLqGijAGla50OWO8JFYQTcGowgpsaQkg9Kxg2lbczIDTfnbWzd0E_7I1sZVLvw1NWilJUWJeMSHKnWquVka6xvo2KL12UctBiUn6DOU4qc7_UKWozdpp3xjrUv8XQDpABx9j-prcBLdW4V1ikJ92yM4OmeyQX3ZImiDaQTGJm7kJu4v_oT4A_CiKMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471685997</pqid></control><display><type>article</type><title>Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review</title><source>SpringerNature Journals</source><creator>Olugbade, Temitope Olumide ; Ojo, Oluwole Timothy</creator><creatorcontrib>Olugbade, Temitope Olumide ; Ojo, Oluwole Timothy</creatorcontrib><description>Torrefaction of biomass materials has received a tremendous attention over the years due to its ability to produce a high-grade solid biofuel with enhanced durability, excellent grindability, higher bulk density and calorific value, and greater energy density, as compared to the original untreated biomass material. It is a mild pyrolysis treatment technology under inert atmosphere which can improve the chemical and physical properties of raw biomass through the elimination of oxygen, reduction of moisture content, and change of chemical compositions. When raw biomass is mildly pyrolyzed in a default-oxygen or N
2
atmosphere at moderate temperatures, the properties of raw biomass including low calorific value, hydrogen-carbon ratio, hygroscopicity, and grindability can be significantly enhanced. In the present review, the operating mechanism of different torrefaction processes including wet, dry, and ionic-liquid-assisted torrefaction is analyzed and discussed. More importantly, the reactor design for commercialization purpose, reaction kinetics and mechanism, economics, and sustainability of biomass torrefaction is discussed in detail. This review is extended to the torrefaction of agro-residue biomass since torrefied agro-residue-based pellets can be produced from agro-residues. The various technological applications of biomass torrefaction are also reviewed and the prospects in ensuring the continuous production of high-grade fuels are summarized.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-020-10138-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atmosphere ; Biofuels ; Biomass ; Biomass energy ; Biomedical and Life Sciences ; Bulk density ; Calorific value ; Chemical composition ; Chemical reaction, Rate of ; Commercialization ; Continuous production ; Drying ; Flux density ; Grindability ; Hygroscopicity ; Inert atmospheres ; Life Sciences ; Moisture content ; Nuclear fuels ; Oxygen ; Physical properties ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Pyrolysis ; Reaction kinetics ; Reactor design ; Residues ; Reviews ; Water content ; Wood Science & Technology</subject><ispartof>Bioenergy research, 2020-12, Vol.13 (4), p.999-1015</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-a336d6a559fc617fcd0825508c8c7b5672f92c30ea4f91f37009cb45cf86eb063</citedby><cites>FETCH-LOGICAL-c489t-a336d6a559fc617fcd0825508c8c7b5672f92c30ea4f91f37009cb45cf86eb063</cites><orcidid>0000-0003-3552-611X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12155-020-10138-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12155-020-10138-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27925,27926,41489,42558,51320</link.rule.ids></links><search><creatorcontrib>Olugbade, Temitope Olumide</creatorcontrib><creatorcontrib>Ojo, Oluwole Timothy</creatorcontrib><title>Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>Torrefaction of biomass materials has received a tremendous attention over the years due to its ability to produce a high-grade solid biofuel with enhanced durability, excellent grindability, higher bulk density and calorific value, and greater energy density, as compared to the original untreated biomass material. It is a mild pyrolysis treatment technology under inert atmosphere which can improve the chemical and physical properties of raw biomass through the elimination of oxygen, reduction of moisture content, and change of chemical compositions. When raw biomass is mildly pyrolyzed in a default-oxygen or N
2
atmosphere at moderate temperatures, the properties of raw biomass including low calorific value, hydrogen-carbon ratio, hygroscopicity, and grindability can be significantly enhanced. In the present review, the operating mechanism of different torrefaction processes including wet, dry, and ionic-liquid-assisted torrefaction is analyzed and discussed. More importantly, the reactor design for commercialization purpose, reaction kinetics and mechanism, economics, and sustainability of biomass torrefaction is discussed in detail. This review is extended to the torrefaction of agro-residue biomass since torrefied agro-residue-based pellets can be produced from agro-residues. The various technological applications of biomass torrefaction are also reviewed and the prospects in ensuring the continuous production of high-grade fuels are summarized.</description><subject>Atmosphere</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Biomedical and Life Sciences</subject><subject>Bulk density</subject><subject>Calorific value</subject><subject>Chemical composition</subject><subject>Chemical reaction, Rate of</subject><subject>Commercialization</subject><subject>Continuous production</subject><subject>Drying</subject><subject>Flux density</subject><subject>Grindability</subject><subject>Hygroscopicity</subject><subject>Inert atmospheres</subject><subject>Life Sciences</subject><subject>Moisture content</subject><subject>Nuclear fuels</subject><subject>Oxygen</subject><subject>Physical properties</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Reactor design</subject><subject>Residues</subject><subject>Reviews</subject><subject>Water content</subject><subject>Wood Science & Technology</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFKAzEQhhdRsFZfwFPA8-ok2WQ33mrRVigqWs8hzSZtSrupyVbx7Y2uWASROcww_N_MMH-WnWI4xwDlRcQEM5YDgRwDplVO97IeFlTkmBRk_6emxWF2FOMSgEMBopfdXTm_VjGiqQ_BWKVb5xtkfUDtwqCH4Ott1_IWjd18kY-Cqg168itXo8TarVnFS6TQo3l15u04O7BqFc3Jd-5nzzfX0-E4n9yPboeDSa6LSrS5opTXXDEmrOa4tLqGijAGla50OWO8JFYQTcGowgpsaQkg9Kxg2lbczIDTfnbWzd0E_7I1sZVLvw1NWilJUWJeMSHKnWquVka6xvo2KL12UctBiUn6DOU4qc7_UKWozdpp3xjrUv8XQDpABx9j-prcBLdW4V1ikJ92yM4OmeyQX3ZImiDaQTGJm7kJu4v_oT4A_CiKMg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Olugbade, Temitope Olumide</creator><creator>Ojo, Oluwole Timothy</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3552-611X</orcidid></search><sort><creationdate>20201201</creationdate><title>Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review</title><author>Olugbade, Temitope Olumide ; Ojo, Oluwole Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-a336d6a559fc617fcd0825508c8c7b5672f92c30ea4f91f37009cb45cf86eb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmosphere</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Biomedical and Life Sciences</topic><topic>Bulk density</topic><topic>Calorific value</topic><topic>Chemical composition</topic><topic>Chemical reaction, Rate of</topic><topic>Commercialization</topic><topic>Continuous production</topic><topic>Drying</topic><topic>Flux density</topic><topic>Grindability</topic><topic>Hygroscopicity</topic><topic>Inert atmospheres</topic><topic>Life Sciences</topic><topic>Moisture content</topic><topic>Nuclear fuels</topic><topic>Oxygen</topic><topic>Physical properties</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Reactor design</topic><topic>Residues</topic><topic>Reviews</topic><topic>Water content</topic><topic>Wood Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olugbade, Temitope Olumide</creatorcontrib><creatorcontrib>Ojo, Oluwole Timothy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olugbade, Temitope Olumide</au><au>Ojo, Oluwole Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>999</spage><epage>1015</epage><pages>999-1015</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>Torrefaction of biomass materials has received a tremendous attention over the years due to its ability to produce a high-grade solid biofuel with enhanced durability, excellent grindability, higher bulk density and calorific value, and greater energy density, as compared to the original untreated biomass material. It is a mild pyrolysis treatment technology under inert atmosphere which can improve the chemical and physical properties of raw biomass through the elimination of oxygen, reduction of moisture content, and change of chemical compositions. When raw biomass is mildly pyrolyzed in a default-oxygen or N
2
atmosphere at moderate temperatures, the properties of raw biomass including low calorific value, hydrogen-carbon ratio, hygroscopicity, and grindability can be significantly enhanced. In the present review, the operating mechanism of different torrefaction processes including wet, dry, and ionic-liquid-assisted torrefaction is analyzed and discussed. More importantly, the reactor design for commercialization purpose, reaction kinetics and mechanism, economics, and sustainability of biomass torrefaction is discussed in detail. This review is extended to the torrefaction of agro-residue biomass since torrefied agro-residue-based pellets can be produced from agro-residues. The various technological applications of biomass torrefaction are also reviewed and the prospects in ensuring the continuous production of high-grade fuels are summarized.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12155-020-10138-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3552-611X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1234 |
ispartof | Bioenergy research, 2020-12, Vol.13 (4), p.999-1015 |
issn | 1939-1234 1939-1242 |
language | eng |
recordid | cdi_proquest_journals_2471685997 |
source | SpringerNature Journals |
subjects | Atmosphere Biofuels Biomass Biomass energy Biomedical and Life Sciences Bulk density Calorific value Chemical composition Chemical reaction, Rate of Commercialization Continuous production Drying Flux density Grindability Hygroscopicity Inert atmospheres Life Sciences Moisture content Nuclear fuels Oxygen Physical properties Plant Breeding/Biotechnology Plant Ecology Plant Genetics and Genomics Plant Sciences Pyrolysis Reaction kinetics Reactor design Residues Reviews Water content Wood Science & Technology |
title | Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20Torrefaction%20for%20the%20Production%20of%20High-Grade%20Solid%20Biofuels:%20a%20Review&rft.jtitle=Bioenergy%20research&rft.au=Olugbade,%20Temitope%20Olumide&rft.date=2020-12-01&rft.volume=13&rft.issue=4&rft.spage=999&rft.epage=1015&rft.pages=999-1015&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-020-10138-3&rft_dat=%3Cgale_proqu%3EA712242361%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471685997&rft_id=info:pmid/&rft_galeid=A712242361&rfr_iscdi=true |