Cross-domain recommender system using generalized canonical correlation analysis
Recommender systems provide personalized recommendations to the users from a large number of possible options in online stores. Matrix factorization is a well-known and accurate collaborative filtering approach for recommender system, which suffers from cold-start problem for new users and items. Wh...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2020-12, Vol.62 (12), p.4625-4651 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4651 |
---|---|
container_issue | 12 |
container_start_page | 4625 |
container_title | Knowledge and information systems |
container_volume | 62 |
creator | Hashemi, Seyed Mohammad Rahmati, Mohammad |
description | Recommender systems provide personalized recommendations to the users from a large number of possible options in online stores. Matrix factorization is a well-known and accurate collaborative filtering approach for recommender system, which suffers from cold-start problem for new users and items. When new users join the system, it will take some time before they enter some ratings in the system, until that time, there are not enough ratings to learn the matrix factorization model. Using auxiliary data such as user’s demographic, ratings and reviews in relevant domains, is an effective solution to reduce the new user problem. In this paper, we used the data of users activity from auxiliary domains to build domain-independent users representation that could be used to predict users ratings in the target domains. We proposed an iterative method which applied MAX-VAR generalized canonical correlation analysis (GCCA) on user’s latent factors learned from matrix factorization on each domain. Also, to improve the capability of GCCA to learn latent factors for new users, we propose a generalized canonical correlation analysis by inverse sum of selection matrices (GCCA-ISSM) approach, which provides better recommendations in cold-start scenarios. The proposed approach is extended using content-based features like topic models extracted from user’s reviews. We demonstrate the accuracy and effectiveness of the proposed approaches on cross-domain rating predictions using comprehensive experiments on Amazon and MovieLens datasets. |
doi_str_mv | 10.1007/s10115-020-01499-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471648552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471648552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c4166481719ebe1f496a16ee026878830e16120824d5e9fc6ad1b0d5a5baac4d3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmA13juMkI6qAIlWCAWbLdS6Vq8QudjqUpyclldiY7ob_-3X3MXaLcI8A5UNCQCw4COCAsq65PGMzEFjzHFGdn3bMy_KSXaW0BcBSIc7Y-yKGlHgTeuN8FsmGviffUMzSIQ3UZ_vk_CbbkKdoOvdNTWaND95Z02U2xEidGVzwmfGmOySXrtlFa7pEN6c5Z5_PTx-LJV-9vbwuHlfc5lgP3EpUSlZYYk1rwlbWyqAiAqGqsqpyIFQooBKyKahurTINrqEpTLE2xsomn7O7qXcXw9ee0qC3YR_HI5IWssSxuyjEmBJTyh7fjNTqXXS9iQeNoI_m9GROj-b0rzktRyifoDSG_YbiX_U_1A_wwHG3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471648552</pqid></control><display><type>article</type><title>Cross-domain recommender system using generalized canonical correlation analysis</title><source>SpringerLink (Online service)</source><creator>Hashemi, Seyed Mohammad ; Rahmati, Mohammad</creator><creatorcontrib>Hashemi, Seyed Mohammad ; Rahmati, Mohammad</creatorcontrib><description>Recommender systems provide personalized recommendations to the users from a large number of possible options in online stores. Matrix factorization is a well-known and accurate collaborative filtering approach for recommender system, which suffers from cold-start problem for new users and items. When new users join the system, it will take some time before they enter some ratings in the system, until that time, there are not enough ratings to learn the matrix factorization model. Using auxiliary data such as user’s demographic, ratings and reviews in relevant domains, is an effective solution to reduce the new user problem. In this paper, we used the data of users activity from auxiliary domains to build domain-independent users representation that could be used to predict users ratings in the target domains. We proposed an iterative method which applied MAX-VAR generalized canonical correlation analysis (GCCA) on user’s latent factors learned from matrix factorization on each domain. Also, to improve the capability of GCCA to learn latent factors for new users, we propose a generalized canonical correlation analysis by inverse sum of selection matrices (GCCA-ISSM) approach, which provides better recommendations in cold-start scenarios. The proposed approach is extended using content-based features like topic models extracted from user’s reviews. We demonstrate the accuracy and effectiveness of the proposed approaches on cross-domain rating predictions using comprehensive experiments on Amazon and MovieLens datasets.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-020-01499-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Cold starts ; Computer Science ; Correlation analysis ; Data Mining and Knowledge Discovery ; Database Management ; Domains ; Factorization ; Feature extraction ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Iterative methods ; Ratings ; Recommender systems ; Regular Paper</subject><ispartof>Knowledge and information systems, 2020-12, Vol.62 (12), p.4625-4651</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c4166481719ebe1f496a16ee026878830e16120824d5e9fc6ad1b0d5a5baac4d3</citedby><cites>FETCH-LOGICAL-c319t-c4166481719ebe1f496a16ee026878830e16120824d5e9fc6ad1b0d5a5baac4d3</cites><orcidid>0000-0002-0591-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-020-01499-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-020-01499-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hashemi, Seyed Mohammad</creatorcontrib><creatorcontrib>Rahmati, Mohammad</creatorcontrib><title>Cross-domain recommender system using generalized canonical correlation analysis</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Recommender systems provide personalized recommendations to the users from a large number of possible options in online stores. Matrix factorization is a well-known and accurate collaborative filtering approach for recommender system, which suffers from cold-start problem for new users and items. When new users join the system, it will take some time before they enter some ratings in the system, until that time, there are not enough ratings to learn the matrix factorization model. Using auxiliary data such as user’s demographic, ratings and reviews in relevant domains, is an effective solution to reduce the new user problem. In this paper, we used the data of users activity from auxiliary domains to build domain-independent users representation that could be used to predict users ratings in the target domains. We proposed an iterative method which applied MAX-VAR generalized canonical correlation analysis (GCCA) on user’s latent factors learned from matrix factorization on each domain. Also, to improve the capability of GCCA to learn latent factors for new users, we propose a generalized canonical correlation analysis by inverse sum of selection matrices (GCCA-ISSM) approach, which provides better recommendations in cold-start scenarios. The proposed approach is extended using content-based features like topic models extracted from user’s reviews. We demonstrate the accuracy and effectiveness of the proposed approaches on cross-domain rating predictions using comprehensive experiments on Amazon and MovieLens datasets.</description><subject>Cold starts</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Domains</subject><subject>Factorization</subject><subject>Feature extraction</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Iterative methods</subject><subject>Ratings</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmA13juMkI6qAIlWCAWbLdS6Vq8QudjqUpyclldiY7ob_-3X3MXaLcI8A5UNCQCw4COCAsq65PGMzEFjzHFGdn3bMy_KSXaW0BcBSIc7Y-yKGlHgTeuN8FsmGviffUMzSIQ3UZ_vk_CbbkKdoOvdNTWaND95Z02U2xEidGVzwmfGmOySXrtlFa7pEN6c5Z5_PTx-LJV-9vbwuHlfc5lgP3EpUSlZYYk1rwlbWyqAiAqGqsqpyIFQooBKyKahurTINrqEpTLE2xsomn7O7qXcXw9ee0qC3YR_HI5IWssSxuyjEmBJTyh7fjNTqXXS9iQeNoI_m9GROj-b0rzktRyifoDSG_YbiX_U_1A_wwHG3</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hashemi, Seyed Mohammad</creator><creator>Rahmati, Mohammad</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0591-6910</orcidid></search><sort><creationdate>20201201</creationdate><title>Cross-domain recommender system using generalized canonical correlation analysis</title><author>Hashemi, Seyed Mohammad ; Rahmati, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c4166481719ebe1f496a16ee026878830e16120824d5e9fc6ad1b0d5a5baac4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cold starts</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Domains</topic><topic>Factorization</topic><topic>Feature extraction</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Iterative methods</topic><topic>Ratings</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, Seyed Mohammad</creatorcontrib><creatorcontrib>Rahmati, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, Seyed Mohammad</au><au>Rahmati, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-domain recommender system using generalized canonical correlation analysis</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>62</volume><issue>12</issue><spage>4625</spage><epage>4651</epage><pages>4625-4651</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Recommender systems provide personalized recommendations to the users from a large number of possible options in online stores. Matrix factorization is a well-known and accurate collaborative filtering approach for recommender system, which suffers from cold-start problem for new users and items. When new users join the system, it will take some time before they enter some ratings in the system, until that time, there are not enough ratings to learn the matrix factorization model. Using auxiliary data such as user’s demographic, ratings and reviews in relevant domains, is an effective solution to reduce the new user problem. In this paper, we used the data of users activity from auxiliary domains to build domain-independent users representation that could be used to predict users ratings in the target domains. We proposed an iterative method which applied MAX-VAR generalized canonical correlation analysis (GCCA) on user’s latent factors learned from matrix factorization on each domain. Also, to improve the capability of GCCA to learn latent factors for new users, we propose a generalized canonical correlation analysis by inverse sum of selection matrices (GCCA-ISSM) approach, which provides better recommendations in cold-start scenarios. The proposed approach is extended using content-based features like topic models extracted from user’s reviews. We demonstrate the accuracy and effectiveness of the proposed approaches on cross-domain rating predictions using comprehensive experiments on Amazon and MovieLens datasets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-020-01499-4</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-0591-6910</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2020-12, Vol.62 (12), p.4625-4651 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_2471648552 |
source | SpringerLink (Online service) |
subjects | Cold starts Computer Science Correlation analysis Data Mining and Knowledge Discovery Database Management Domains Factorization Feature extraction Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Iterative methods Ratings Recommender systems Regular Paper |
title | Cross-domain recommender system using generalized canonical correlation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-domain%20recommender%20system%20using%20generalized%20canonical%20correlation%20analysis&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Hashemi,%20Seyed%20Mohammad&rft.date=2020-12-01&rft.volume=62&rft.issue=12&rft.spage=4625&rft.epage=4651&rft.pages=4625-4651&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-020-01499-4&rft_dat=%3Cproquest_cross%3E2471648552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471648552&rft_id=info:pmid/&rfr_iscdi=true |