Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production

Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianu s. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-12, Vol.104 (24), p.10585-10599
Hauptverfasser: Xia, Kai, Han, Chengcheng, Xu, Jun, Liang, Xinle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10599
container_issue 24
container_start_page 10585
container_title Applied microbiology and biotechnology
container_volume 104
creator Xia, Kai
Han, Chengcheng
Xu, Jun
Liang, Xinle
description Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianu s. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production. Key Points • TCS and TAS are responsive to the acid stress and constitute the regulating networks. • Adaptive expression changes of cell envelope elements help cell resist acid stress. • Cells promote genome stability and diversify ATP production to withstand acid stress.
doi_str_mv 10.1007/s00253-020-10995-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471614506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642125901</galeid><sourcerecordid>A642125901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-516343fb639b7622da7f4da43604cff6a87e9bedfeb9fbc85cb11c23c937b33a3</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMo9lj9A15IwKtebM33nr08FD8KBUHrdUiyk21qN1mTbNF_39RTLQdEcjEQnneGmQeh15ScUkL6d4UQJnlHGOkoGQbZkSdoQwVnHVFUPEUbQnvZ9XLYHqEXpVwTQtlWqefoiHMqlRBqg75fZhOLy2GpaQacoSwpFsDJ452DmqxxFTJeTKmw5mDiWvDOclwTvgrTFTYNCq6VMOJSW7zgsXFxwrchwmRaNKdxdTWk-BI98-amwKuHeoy-fXh_efapu_j88fxsd9E5SXntJFVccG8VH2yvGBtN78VoBFdEOO-V2fYwWBg92MFbt5XOUuoYdwPvLeeGH6O3-75t9I8VStXXac2xjdRM9LTdRhL1SE3mBnSIPtVs3ByK0zslGGVyILRRp_-g2hthDi5F8KH9HwRODgKNqfCzTmYtRZ9__XLIsj3rciolg9dLDrPJvzQl-l6x3ivWTbH-rViTFnrzsN1qZxj_Rv44bQDfA2W5FwH5cf3_tL0DA5-wiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471614506</pqid></control><display><type>article</type><title>Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xia, Kai ; Han, Chengcheng ; Xu, Jun ; Liang, Xinle</creator><creatorcontrib>Xia, Kai ; Han, Chengcheng ; Xu, Jun ; Liang, Xinle</creatorcontrib><description>Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianu s. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production. Key Points • TCS and TAS are responsive to the acid stress and constitute the regulating networks. • Adaptive expression changes of cell envelope elements help cell resist acid stress. • Cells promote genome stability and diversify ATP production to withstand acid stress.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10995-0</identifier><identifier>PMID: 33156446</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Acetic acid ; Acetic Acid - toxicity ; Acetobacter - genetics ; Acetobacter pasteurianus ; Acid resistance ; Acidity ; Acids ; Analysis ; Antitoxins ; ATP ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Ceramide ; Cultivation ; Enzymatic activity ; Enzyme activity ; Fermentation ; Gene expression ; Genes ; Genetic aspects ; Genetic transcription ; Genomes ; Genomics ; Lecithin ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Peptidoglycans ; Phosphatidylcholine ; Physiological aspects ; Production processes ; Prostheses ; Prosthetic groups ; Proteobacteria ; Proteomics ; Pyrroloquinoline quinone ; Quinones ; Stability ; Strain ; Stress ; Thiamine ; Toxicity ; Toxins ; Transcription ; Transcriptome ; Transcriptomics ; Vinegar</subject><ispartof>Applied microbiology and biotechnology, 2020-12, Vol.104 (24), p.10585-10599</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-516343fb639b7622da7f4da43604cff6a87e9bedfeb9fbc85cb11c23c937b33a3</citedby><cites>FETCH-LOGICAL-c513t-516343fb639b7622da7f4da43604cff6a87e9bedfeb9fbc85cb11c23c937b33a3</cites><orcidid>0000-0003-3454-7496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10995-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10995-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33156446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Kai</creatorcontrib><creatorcontrib>Han, Chengcheng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Liang, Xinle</creatorcontrib><title>Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianu s. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production. Key Points • TCS and TAS are responsive to the acid stress and constitute the regulating networks. • Adaptive expression changes of cell envelope elements help cell resist acid stress. • Cells promote genome stability and diversify ATP production to withstand acid stress.</description><subject>Accumulation</subject><subject>Acetic acid</subject><subject>Acetic Acid - toxicity</subject><subject>Acetobacter - genetics</subject><subject>Acetobacter pasteurianus</subject><subject>Acid resistance</subject><subject>Acidity</subject><subject>Acids</subject><subject>Analysis</subject><subject>Antitoxins</subject><subject>ATP</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Ceramide</subject><subject>Cultivation</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Lecithin</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Peptidoglycans</subject><subject>Phosphatidylcholine</subject><subject>Physiological aspects</subject><subject>Production processes</subject><subject>Prostheses</subject><subject>Prosthetic groups</subject><subject>Proteobacteria</subject><subject>Proteomics</subject><subject>Pyrroloquinoline quinone</subject><subject>Quinones</subject><subject>Stability</subject><subject>Strain</subject><subject>Stress</subject><subject>Thiamine</subject><subject>Toxicity</subject><subject>Toxins</subject><subject>Transcription</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Vinegar</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFTEQhoMo9lj9A15IwKtebM33nr08FD8KBUHrdUiyk21qN1mTbNF_39RTLQdEcjEQnneGmQeh15ScUkL6d4UQJnlHGOkoGQbZkSdoQwVnHVFUPEUbQnvZ9XLYHqEXpVwTQtlWqefoiHMqlRBqg75fZhOLy2GpaQacoSwpFsDJ452DmqxxFTJeTKmw5mDiWvDOclwTvgrTFTYNCq6VMOJSW7zgsXFxwrchwmRaNKdxdTWk-BI98-amwKuHeoy-fXh_efapu_j88fxsd9E5SXntJFVccG8VH2yvGBtN78VoBFdEOO-V2fYwWBg92MFbt5XOUuoYdwPvLeeGH6O3-75t9I8VStXXac2xjdRM9LTdRhL1SE3mBnSIPtVs3ByK0zslGGVyILRRp_-g2hthDi5F8KH9HwRODgKNqfCzTmYtRZ9__XLIsj3rciolg9dLDrPJvzQl-l6x3ivWTbH-rViTFnrzsN1qZxj_Rv44bQDfA2W5FwH5cf3_tL0DA5-wiQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Xia, Kai</creator><creator>Han, Chengcheng</creator><creator>Xu, Jun</creator><creator>Liang, Xinle</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3454-7496</orcidid></search><sort><creationdate>20201201</creationdate><title>Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production</title><author>Xia, Kai ; Han, Chengcheng ; Xu, Jun ; Liang, Xinle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-516343fb639b7622da7f4da43604cff6a87e9bedfeb9fbc85cb11c23c937b33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Acetic acid</topic><topic>Acetic Acid - toxicity</topic><topic>Acetobacter - genetics</topic><topic>Acetobacter pasteurianus</topic><topic>Acid resistance</topic><topic>Acidity</topic><topic>Acids</topic><topic>Analysis</topic><topic>Antitoxins</topic><topic>ATP</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Ceramide</topic><topic>Cultivation</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Lecithin</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Peptidoglycans</topic><topic>Phosphatidylcholine</topic><topic>Physiological aspects</topic><topic>Production processes</topic><topic>Prostheses</topic><topic>Prosthetic groups</topic><topic>Proteobacteria</topic><topic>Proteomics</topic><topic>Pyrroloquinoline quinone</topic><topic>Quinones</topic><topic>Stability</topic><topic>Strain</topic><topic>Stress</topic><topic>Thiamine</topic><topic>Toxicity</topic><topic>Toxins</topic><topic>Transcription</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Kai</creatorcontrib><creatorcontrib>Han, Chengcheng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Liang, Xinle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Kai</au><au>Han, Chengcheng</au><au>Xu, Jun</au><au>Liang, Xinle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>104</volume><issue>24</issue><spage>10585</spage><epage>10599</epage><pages>10585-10599</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianu s. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production. Key Points • TCS and TAS are responsive to the acid stress and constitute the regulating networks. • Adaptive expression changes of cell envelope elements help cell resist acid stress. • Cells promote genome stability and diversify ATP production to withstand acid stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33156446</pmid><doi>10.1007/s00253-020-10995-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3454-7496</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-12, Vol.104 (24), p.10585-10599
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_2471614506
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Accumulation
Acetic acid
Acetic Acid - toxicity
Acetobacter - genetics
Acetobacter pasteurianus
Acid resistance
Acidity
Acids
Analysis
Antitoxins
ATP
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Ceramide
Cultivation
Enzymatic activity
Enzyme activity
Fermentation
Gene expression
Genes
Genetic aspects
Genetic transcription
Genomes
Genomics
Lecithin
Life Sciences
Microbial Genetics and Genomics
Microbiology
Peptidoglycans
Phosphatidylcholine
Physiological aspects
Production processes
Prostheses
Prosthetic groups
Proteobacteria
Proteomics
Pyrroloquinoline quinone
Quinones
Stability
Strain
Stress
Thiamine
Toxicity
Toxins
Transcription
Transcriptome
Transcriptomics
Vinegar
title Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20response%20of%20Acetobacter%20pasteurianus%20Ab3%20to%20high%20acetic%20acid%20stress%20during%20vinegar%20production&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Xia,%20Kai&rft.date=2020-12-01&rft.volume=104&rft.issue=24&rft.spage=10585&rft.epage=10599&rft.pages=10585-10599&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10995-0&rft_dat=%3Cgale_proqu%3EA642125901%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471614506&rft_id=info:pmid/33156446&rft_galeid=A642125901&rfr_iscdi=true