Meshless method with ridge basis functions for time fractional two-flow domain model

In this paper, a meshless method with ridge basis functions for solving the time fractional two-flow domain model problem is proposed. The method uses the L 1 approximation formula based on piecewise linear interpolation to discretize the Caputo time fractional derivative ( 0 < α < 1 ) , and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Sciences 2020-12, Vol.14 (4), p.375-385
Hauptverfasser: Qin, Xinqiang, Li, Keyuan, Hu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 4
container_start_page 375
container_title Mathematical Sciences
container_volume 14
creator Qin, Xinqiang
Li, Keyuan
Hu, Gang
description In this paper, a meshless method with ridge basis functions for solving the time fractional two-flow domain model problem is proposed. The method uses the L 1 approximation formula based on piecewise linear interpolation to discretize the Caputo time fractional derivative ( 0 < α < 1 ) , and by means of the ridge basis function to construct the approximation function, and uses the collocation method to discretize the governing equation. The existence and uniqueness of the numerical solution are analyzed. The error between the proposed method and the finite difference method is compared by numerical examples; then the affecting factors of the calculation accuracy are discussed. The results show that the proposed method is feasible and simple.
doi_str_mv 10.1007/s40096-020-00348-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471560574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639207155</galeid><sourcerecordid>A639207155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-d85cda71489d107d01ca1d47fbeea5149c890d5565d8d008b8bc20013aebeb0e3</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhE1poaHNC_Qk6FnpypIs-xhC_yCll_QsZGudKNhWKjmEvn3VuNBbV4ddlvnE7GTZHYMFA1APUQBUBYUcKAAXJeUX2SzPJaNKyOIyzQAlZVxW19k8xj2kUqoCIWfZ5g3jrsMYSY_jzltycuOOBGe3SGoTXSTtcWhG54c0-UBG1yNpgzmvTEfGk6dt50_E-t64gfTeYnebXbWmizj_7TfZx9PjZvVC1-_Pr6vlmjY5r0ZqS9lYo5goK8tAWWCNYVaotkY0komqKSuwUhbSljadUJd1k05h3GCNNSC_ye6nfw_Bfx4xjnrvjyHZijoXiskCpBJJtZhUW9OhdkPrx-Q_PYu9a_yArUv7ZcGrHBIkE5BPQBN8jAFbfQiuN-FLM9A_iespcZ0S1-fENU8Qn6CYxMMWw5-Xf6hvCQGDgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471560574</pqid></control><display><type>article</type><title>Meshless method with ridge basis functions for time fractional two-flow domain model</title><source>SpringerLink Journals</source><creator>Qin, Xinqiang ; Li, Keyuan ; Hu, Gang</creator><creatorcontrib>Qin, Xinqiang ; Li, Keyuan ; Hu, Gang</creatorcontrib><description>In this paper, a meshless method with ridge basis functions for solving the time fractional two-flow domain model problem is proposed. The method uses the L 1 approximation formula based on piecewise linear interpolation to discretize the Caputo time fractional derivative ( 0 &lt; α &lt; 1 ) , and by means of the ridge basis function to construct the approximation function, and uses the collocation method to discretize the governing equation. The existence and uniqueness of the numerical solution are analyzed. The error between the proposed method and the finite difference method is compared by numerical examples; then the affecting factors of the calculation accuracy are discussed. The results show that the proposed method is feasible and simple.</description><identifier>ISSN: 2008-1359</identifier><identifier>EISSN: 2251-7456</identifier><identifier>DOI: 10.1007/s40096-020-00348-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Approximation ; Basis functions ; Collocation methods ; Comparative analysis ; Domains ; Error analysis ; Finite difference method ; Finite element method ; Flow (Dynamics) ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Meshless methods ; Methods ; Original Research</subject><ispartof>Mathematical Sciences, 2020-12, Vol.14 (4), p.375-385</ispartof><rights>Islamic Azad University 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Islamic Azad University 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-d85cda71489d107d01ca1d47fbeea5149c890d5565d8d008b8bc20013aebeb0e3</cites><orcidid>0000-0001-5754-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40096-020-00348-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40096-020-00348-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qin, Xinqiang</creatorcontrib><creatorcontrib>Li, Keyuan</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><title>Meshless method with ridge basis functions for time fractional two-flow domain model</title><title>Mathematical Sciences</title><addtitle>Math Sci</addtitle><description>In this paper, a meshless method with ridge basis functions for solving the time fractional two-flow domain model problem is proposed. The method uses the L 1 approximation formula based on piecewise linear interpolation to discretize the Caputo time fractional derivative ( 0 &lt; α &lt; 1 ) , and by means of the ridge basis function to construct the approximation function, and uses the collocation method to discretize the governing equation. The existence and uniqueness of the numerical solution are analyzed. The error between the proposed method and the finite difference method is compared by numerical examples; then the affecting factors of the calculation accuracy are discussed. The results show that the proposed method is feasible and simple.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Collocation methods</subject><subject>Comparative analysis</subject><subject>Domains</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Flow (Dynamics)</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meshless methods</subject><subject>Methods</subject><subject>Original Research</subject><issn>2008-1359</issn><issn>2251-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1qwzAQhE1poaHNC_Qk6FnpypIs-xhC_yCll_QsZGudKNhWKjmEvn3VuNBbV4ddlvnE7GTZHYMFA1APUQBUBYUcKAAXJeUX2SzPJaNKyOIyzQAlZVxW19k8xj2kUqoCIWfZ5g3jrsMYSY_jzltycuOOBGe3SGoTXSTtcWhG54c0-UBG1yNpgzmvTEfGk6dt50_E-t64gfTeYnebXbWmizj_7TfZx9PjZvVC1-_Pr6vlmjY5r0ZqS9lYo5goK8tAWWCNYVaotkY0komqKSuwUhbSljadUJd1k05h3GCNNSC_ye6nfw_Bfx4xjnrvjyHZijoXiskCpBJJtZhUW9OhdkPrx-Q_PYu9a_yArUv7ZcGrHBIkE5BPQBN8jAFbfQiuN-FLM9A_iespcZ0S1-fENU8Qn6CYxMMWw5-Xf6hvCQGDgA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Qin, Xinqiang</creator><creator>Li, Keyuan</creator><creator>Hu, Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5754-2271</orcidid></search><sort><creationdate>20201201</creationdate><title>Meshless method with ridge basis functions for time fractional two-flow domain model</title><author>Qin, Xinqiang ; Li, Keyuan ; Hu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-d85cda71489d107d01ca1d47fbeea5149c890d5565d8d008b8bc20013aebeb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Collocation methods</topic><topic>Comparative analysis</topic><topic>Domains</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Flow (Dynamics)</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meshless methods</topic><topic>Methods</topic><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xinqiang</creatorcontrib><creatorcontrib>Li, Keyuan</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Xinqiang</au><au>Li, Keyuan</au><au>Hu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless method with ridge basis functions for time fractional two-flow domain model</atitle><jtitle>Mathematical Sciences</jtitle><stitle>Math Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>14</volume><issue>4</issue><spage>375</spage><epage>385</epage><pages>375-385</pages><issn>2008-1359</issn><eissn>2251-7456</eissn><abstract>In this paper, a meshless method with ridge basis functions for solving the time fractional two-flow domain model problem is proposed. The method uses the L 1 approximation formula based on piecewise linear interpolation to discretize the Caputo time fractional derivative ( 0 &lt; α &lt; 1 ) , and by means of the ridge basis function to construct the approximation function, and uses the collocation method to discretize the governing equation. The existence and uniqueness of the numerical solution are analyzed. The error between the proposed method and the finite difference method is compared by numerical examples; then the affecting factors of the calculation accuracy are discussed. The results show that the proposed method is feasible and simple.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40096-020-00348-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5754-2271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2008-1359
ispartof Mathematical Sciences, 2020-12, Vol.14 (4), p.375-385
issn 2008-1359
2251-7456
language eng
recordid cdi_proquest_journals_2471560574
source SpringerLink Journals
subjects Applications of Mathematics
Approximation
Basis functions
Collocation methods
Comparative analysis
Domains
Error analysis
Finite difference method
Finite element method
Flow (Dynamics)
Interpolation
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Meshless methods
Methods
Original Research
title Meshless method with ridge basis functions for time fractional two-flow domain model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20method%20with%20ridge%20basis%20functions%20for%20time%20fractional%20two-flow%20domain%20model&rft.jtitle=Mathematical%20Sciences&rft.au=Qin,%20Xinqiang&rft.date=2020-12-01&rft.volume=14&rft.issue=4&rft.spage=375&rft.epage=385&rft.pages=375-385&rft.issn=2008-1359&rft.eissn=2251-7456&rft_id=info:doi/10.1007/s40096-020-00348-3&rft_dat=%3Cgale_proqu%3EA639207155%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471560574&rft_id=info:pmid/&rft_galeid=A639207155&rfr_iscdi=true