BAK core dimers bind lipids and can be bridged by them

BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-11, Vol.27 (11), p.1024-1031
Hauptverfasser: Cowan, Angus D., Smith, Nicholas A., Sandow, Jarrod J., Kapp, Eugene A., Rustam, Yepy H., Murphy, James M., Brouwer, Jason M., Bernardini, Jonathan P., Roy, Michael J., Wardak, Ahmad Z., Tan, Iris K., Webb, Andrew I., Gulbis, Jacqueline M., Smith, Brian J., Reid, Gavin E., Dewson, Grant, Colman, Peter M., Czabotar, Peter E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1031
container_issue 11
container_start_page 1024
container_title Nature structural & molecular biology
container_volume 27
creator Cowan, Angus D.
Smith, Nicholas A.
Sandow, Jarrod J.
Kapp, Eugene A.
Rustam, Yepy H.
Murphy, James M.
Brouwer, Jason M.
Bernardini, Jonathan P.
Roy, Michael J.
Wardak, Ahmad Z.
Tan, Iris K.
Webb, Andrew I.
Gulbis, Jacqueline M.
Smith, Brian J.
Reid, Gavin E.
Dewson, Grant
Colman, Peter M.
Czabotar, Peter E.
description BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain ( sn 2) associate with one core dimer while the other acyl chain ( sn 1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization. Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.
doi_str_mv 10.1038/s41594-020-0494-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471532103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471532103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqXwAWyQJdYBP-t4WSpeohIbWFt-TEqqJil2uujf4yqlrNAs5kpz587oIHRNyR0lvLxPgkotCsJIQUQW8gSNqRSy0LqUp0et-QhdpLQihEmp-DkacaZzlWSMpg-zN-y7CDjUDcSEXd0GvK43dUjYZultix1gF-uwhIDdDvdf0Fyis8quE1wd-gR9Pj1-zF-Kxfvz63y2KDxXrC-o8FpVwXKQ3HJt878lWMKDqDyTDJTjFEpnhVLMV1rLqQIoRVVOGXWUUD5Bt0PuJnbfW0i9WXXb2OaThglFJWcZRHbRweVjl1KEymxi3di4M5SYPSkzkDKZlNmTMjLv3BySt66BcNz4RZMNbDCkPGqXEP9O_5_6A6w5cKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471532103</pqid></control><display><type>article</type><title>BAK core dimers bind lipids and can be bridged by them</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink (Online service)</source><creator>Cowan, Angus D. ; Smith, Nicholas A. ; Sandow, Jarrod J. ; Kapp, Eugene A. ; Rustam, Yepy H. ; Murphy, James M. ; Brouwer, Jason M. ; Bernardini, Jonathan P. ; Roy, Michael J. ; Wardak, Ahmad Z. ; Tan, Iris K. ; Webb, Andrew I. ; Gulbis, Jacqueline M. ; Smith, Brian J. ; Reid, Gavin E. ; Dewson, Grant ; Colman, Peter M. ; Czabotar, Peter E.</creator><creatorcontrib>Cowan, Angus D. ; Smith, Nicholas A. ; Sandow, Jarrod J. ; Kapp, Eugene A. ; Rustam, Yepy H. ; Murphy, James M. ; Brouwer, Jason M. ; Bernardini, Jonathan P. ; Roy, Michael J. ; Wardak, Ahmad Z. ; Tan, Iris K. ; Webb, Andrew I. ; Gulbis, Jacqueline M. ; Smith, Brian J. ; Reid, Gavin E. ; Dewson, Grant ; Colman, Peter M. ; Czabotar, Peter E.</creatorcontrib><description>BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain ( sn 2) associate with one core dimer while the other acyl chain ( sn 1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization. Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0494-5</identifier><identifier>PMID: 32929280</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535/1266 ; 631/80/82 ; 82/58 ; Apoptosis ; BAX protein ; bcl-2 Homologous Antagonist-Killer Protein - chemistry ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; Binding Sites ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chains ; Crystal structure ; Crystallography, X-Ray ; Detergents ; Dimers ; Domains ; Humans ; Interfaces ; Life Sciences ; Lipids ; Membrane Biology ; Membrane Lipids - chemistry ; Membrane Lipids - metabolism ; Membrane proteins ; Membranes ; Mitochondria ; Molecular Docking Simulation ; Monomers ; Mutagenesis ; Oligomerization ; Oligomers ; Phospholipids ; Pore formation ; Pore-forming proteins ; Protein Binding ; Protein Multimerization ; Protein Structure ; Proteins</subject><ispartof>Nature structural &amp; molecular biology, 2020-11, Vol.27 (11), p.1024-1031</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</citedby><cites>FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</cites><orcidid>0000-0003-0198-9108 ; 0000-0001-5684-8236 ; 0000-0002-1298-9034 ; 0000-0002-2594-496X ; 0000-0001-8894-4249 ; 0000-0002-9702-7319 ; 0000-0003-0195-3949 ; 0000-0002-5767-7624 ; 0000-0003-0498-1910 ; 0000-0001-5061-6995 ; 0000-0001-8537-4041 ; 0000-0003-2091-2237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0494-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0494-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32929280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cowan, Angus D.</creatorcontrib><creatorcontrib>Smith, Nicholas A.</creatorcontrib><creatorcontrib>Sandow, Jarrod J.</creatorcontrib><creatorcontrib>Kapp, Eugene A.</creatorcontrib><creatorcontrib>Rustam, Yepy H.</creatorcontrib><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Brouwer, Jason M.</creatorcontrib><creatorcontrib>Bernardini, Jonathan P.</creatorcontrib><creatorcontrib>Roy, Michael J.</creatorcontrib><creatorcontrib>Wardak, Ahmad Z.</creatorcontrib><creatorcontrib>Tan, Iris K.</creatorcontrib><creatorcontrib>Webb, Andrew I.</creatorcontrib><creatorcontrib>Gulbis, Jacqueline M.</creatorcontrib><creatorcontrib>Smith, Brian J.</creatorcontrib><creatorcontrib>Reid, Gavin E.</creatorcontrib><creatorcontrib>Dewson, Grant</creatorcontrib><creatorcontrib>Colman, Peter M.</creatorcontrib><creatorcontrib>Czabotar, Peter E.</creatorcontrib><title>BAK core dimers bind lipids and can be bridged by them</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain ( sn 2) associate with one core dimer while the other acyl chain ( sn 1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization. Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.</description><subject>631/535/1266</subject><subject>631/80/82</subject><subject>82/58</subject><subject>Apoptosis</subject><subject>BAX protein</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - chemistry</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chains</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Detergents</subject><subject>Dimers</subject><subject>Domains</subject><subject>Humans</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Membrane Biology</subject><subject>Membrane Lipids - chemistry</subject><subject>Membrane Lipids - metabolism</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Molecular Docking Simulation</subject><subject>Monomers</subject><subject>Mutagenesis</subject><subject>Oligomerization</subject><subject>Oligomers</subject><subject>Phospholipids</subject><subject>Pore formation</subject><subject>Pore-forming proteins</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Proteins</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EoqXwAWyQJdYBP-t4WSpeohIbWFt-TEqqJil2uujf4yqlrNAs5kpz587oIHRNyR0lvLxPgkotCsJIQUQW8gSNqRSy0LqUp0et-QhdpLQihEmp-DkacaZzlWSMpg-zN-y7CDjUDcSEXd0GvK43dUjYZultix1gF-uwhIDdDvdf0Fyis8quE1wd-gR9Pj1-zF-Kxfvz63y2KDxXrC-o8FpVwXKQ3HJt878lWMKDqDyTDJTjFEpnhVLMV1rLqQIoRVVOGXWUUD5Bt0PuJnbfW0i9WXXb2OaThglFJWcZRHbRweVjl1KEymxi3di4M5SYPSkzkDKZlNmTMjLv3BySt66BcNz4RZMNbDCkPGqXEP9O_5_6A6w5cKM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Cowan, Angus D.</creator><creator>Smith, Nicholas A.</creator><creator>Sandow, Jarrod J.</creator><creator>Kapp, Eugene A.</creator><creator>Rustam, Yepy H.</creator><creator>Murphy, James M.</creator><creator>Brouwer, Jason M.</creator><creator>Bernardini, Jonathan P.</creator><creator>Roy, Michael J.</creator><creator>Wardak, Ahmad Z.</creator><creator>Tan, Iris K.</creator><creator>Webb, Andrew I.</creator><creator>Gulbis, Jacqueline M.</creator><creator>Smith, Brian J.</creator><creator>Reid, Gavin E.</creator><creator>Dewson, Grant</creator><creator>Colman, Peter M.</creator><creator>Czabotar, Peter E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0198-9108</orcidid><orcidid>https://orcid.org/0000-0001-5684-8236</orcidid><orcidid>https://orcid.org/0000-0002-1298-9034</orcidid><orcidid>https://orcid.org/0000-0002-2594-496X</orcidid><orcidid>https://orcid.org/0000-0001-8894-4249</orcidid><orcidid>https://orcid.org/0000-0002-9702-7319</orcidid><orcidid>https://orcid.org/0000-0003-0195-3949</orcidid><orcidid>https://orcid.org/0000-0002-5767-7624</orcidid><orcidid>https://orcid.org/0000-0003-0498-1910</orcidid><orcidid>https://orcid.org/0000-0001-5061-6995</orcidid><orcidid>https://orcid.org/0000-0001-8537-4041</orcidid><orcidid>https://orcid.org/0000-0003-2091-2237</orcidid></search><sort><creationdate>20201101</creationdate><title>BAK core dimers bind lipids and can be bridged by them</title><author>Cowan, Angus D. ; Smith, Nicholas A. ; Sandow, Jarrod J. ; Kapp, Eugene A. ; Rustam, Yepy H. ; Murphy, James M. ; Brouwer, Jason M. ; Bernardini, Jonathan P. ; Roy, Michael J. ; Wardak, Ahmad Z. ; Tan, Iris K. ; Webb, Andrew I. ; Gulbis, Jacqueline M. ; Smith, Brian J. ; Reid, Gavin E. ; Dewson, Grant ; Colman, Peter M. ; Czabotar, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/535/1266</topic><topic>631/80/82</topic><topic>82/58</topic><topic>Apoptosis</topic><topic>BAX protein</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - chemistry</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chains</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Detergents</topic><topic>Dimers</topic><topic>Domains</topic><topic>Humans</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Membrane Biology</topic><topic>Membrane Lipids - chemistry</topic><topic>Membrane Lipids - metabolism</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Molecular Docking Simulation</topic><topic>Monomers</topic><topic>Mutagenesis</topic><topic>Oligomerization</topic><topic>Oligomers</topic><topic>Phospholipids</topic><topic>Pore formation</topic><topic>Pore-forming proteins</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowan, Angus D.</creatorcontrib><creatorcontrib>Smith, Nicholas A.</creatorcontrib><creatorcontrib>Sandow, Jarrod J.</creatorcontrib><creatorcontrib>Kapp, Eugene A.</creatorcontrib><creatorcontrib>Rustam, Yepy H.</creatorcontrib><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Brouwer, Jason M.</creatorcontrib><creatorcontrib>Bernardini, Jonathan P.</creatorcontrib><creatorcontrib>Roy, Michael J.</creatorcontrib><creatorcontrib>Wardak, Ahmad Z.</creatorcontrib><creatorcontrib>Tan, Iris K.</creatorcontrib><creatorcontrib>Webb, Andrew I.</creatorcontrib><creatorcontrib>Gulbis, Jacqueline M.</creatorcontrib><creatorcontrib>Smith, Brian J.</creatorcontrib><creatorcontrib>Reid, Gavin E.</creatorcontrib><creatorcontrib>Dewson, Grant</creatorcontrib><creatorcontrib>Colman, Peter M.</creatorcontrib><creatorcontrib>Czabotar, Peter E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowan, Angus D.</au><au>Smith, Nicholas A.</au><au>Sandow, Jarrod J.</au><au>Kapp, Eugene A.</au><au>Rustam, Yepy H.</au><au>Murphy, James M.</au><au>Brouwer, Jason M.</au><au>Bernardini, Jonathan P.</au><au>Roy, Michael J.</au><au>Wardak, Ahmad Z.</au><au>Tan, Iris K.</au><au>Webb, Andrew I.</au><au>Gulbis, Jacqueline M.</au><au>Smith, Brian J.</au><au>Reid, Gavin E.</au><au>Dewson, Grant</au><au>Colman, Peter M.</au><au>Czabotar, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BAK core dimers bind lipids and can be bridged by them</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>27</volume><issue>11</issue><spage>1024</spage><epage>1031</epage><pages>1024-1031</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain ( sn 2) associate with one core dimer while the other acyl chain ( sn 1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization. Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32929280</pmid><doi>10.1038/s41594-020-0494-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0198-9108</orcidid><orcidid>https://orcid.org/0000-0001-5684-8236</orcidid><orcidid>https://orcid.org/0000-0002-1298-9034</orcidid><orcidid>https://orcid.org/0000-0002-2594-496X</orcidid><orcidid>https://orcid.org/0000-0001-8894-4249</orcidid><orcidid>https://orcid.org/0000-0002-9702-7319</orcidid><orcidid>https://orcid.org/0000-0003-0195-3949</orcidid><orcidid>https://orcid.org/0000-0002-5767-7624</orcidid><orcidid>https://orcid.org/0000-0003-0498-1910</orcidid><orcidid>https://orcid.org/0000-0001-5061-6995</orcidid><orcidid>https://orcid.org/0000-0001-8537-4041</orcidid><orcidid>https://orcid.org/0000-0003-2091-2237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-11, Vol.27 (11), p.1024-1031
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_journals_2471532103
source MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink (Online service)
subjects 631/535/1266
631/80/82
82/58
Apoptosis
BAX protein
bcl-2 Homologous Antagonist-Killer Protein - chemistry
bcl-2 Homologous Antagonist-Killer Protein - metabolism
Binding Sites
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chains
Crystal structure
Crystallography, X-Ray
Detergents
Dimers
Domains
Humans
Interfaces
Life Sciences
Lipids
Membrane Biology
Membrane Lipids - chemistry
Membrane Lipids - metabolism
Membrane proteins
Membranes
Mitochondria
Molecular Docking Simulation
Monomers
Mutagenesis
Oligomerization
Oligomers
Phospholipids
Pore formation
Pore-forming proteins
Protein Binding
Protein Multimerization
Protein Structure
Proteins
title BAK core dimers bind lipids and can be bridged by them
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BAK%20core%20dimers%20bind%20lipids%20and%20can%20be%20bridged%20by%20them&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Cowan,%20Angus%20D.&rft.date=2020-11-01&rft.volume=27&rft.issue=11&rft.spage=1024&rft.epage=1031&rft.pages=1024-1031&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0494-5&rft_dat=%3Cproquest_cross%3E2471532103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471532103&rft_id=info:pmid/32929280&rfr_iscdi=true