BAK core dimers bind lipids and can be bridged by them
BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, n...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2020-11, Vol.27 (11), p.1024-1031 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1031 |
---|---|
container_issue | 11 |
container_start_page | 1024 |
container_title | Nature structural & molecular biology |
container_volume | 27 |
creator | Cowan, Angus D. Smith, Nicholas A. Sandow, Jarrod J. Kapp, Eugene A. Rustam, Yepy H. Murphy, James M. Brouwer, Jason M. Bernardini, Jonathan P. Roy, Michael J. Wardak, Ahmad Z. Tan, Iris K. Webb, Andrew I. Gulbis, Jacqueline M. Smith, Brian J. Reid, Gavin E. Dewson, Grant Colman, Peter M. Czabotar, Peter E. |
description | BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain (
sn
2) associate with one core dimer while the other acyl chain (
sn
1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization.
Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane. |
doi_str_mv | 10.1038/s41594-020-0494-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471532103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471532103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqXwAWyQJdYBP-t4WSpeohIbWFt-TEqqJil2uujf4yqlrNAs5kpz587oIHRNyR0lvLxPgkotCsJIQUQW8gSNqRSy0LqUp0et-QhdpLQihEmp-DkacaZzlWSMpg-zN-y7CDjUDcSEXd0GvK43dUjYZultix1gF-uwhIDdDvdf0Fyis8quE1wd-gR9Pj1-zF-Kxfvz63y2KDxXrC-o8FpVwXKQ3HJt878lWMKDqDyTDJTjFEpnhVLMV1rLqQIoRVVOGXWUUD5Bt0PuJnbfW0i9WXXb2OaThglFJWcZRHbRweVjl1KEymxi3di4M5SYPSkzkDKZlNmTMjLv3BySt66BcNz4RZMNbDCkPGqXEP9O_5_6A6w5cKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471532103</pqid></control><display><type>article</type><title>BAK core dimers bind lipids and can be bridged by them</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink (Online service)</source><creator>Cowan, Angus D. ; Smith, Nicholas A. ; Sandow, Jarrod J. ; Kapp, Eugene A. ; Rustam, Yepy H. ; Murphy, James M. ; Brouwer, Jason M. ; Bernardini, Jonathan P. ; Roy, Michael J. ; Wardak, Ahmad Z. ; Tan, Iris K. ; Webb, Andrew I. ; Gulbis, Jacqueline M. ; Smith, Brian J. ; Reid, Gavin E. ; Dewson, Grant ; Colman, Peter M. ; Czabotar, Peter E.</creator><creatorcontrib>Cowan, Angus D. ; Smith, Nicholas A. ; Sandow, Jarrod J. ; Kapp, Eugene A. ; Rustam, Yepy H. ; Murphy, James M. ; Brouwer, Jason M. ; Bernardini, Jonathan P. ; Roy, Michael J. ; Wardak, Ahmad Z. ; Tan, Iris K. ; Webb, Andrew I. ; Gulbis, Jacqueline M. ; Smith, Brian J. ; Reid, Gavin E. ; Dewson, Grant ; Colman, Peter M. ; Czabotar, Peter E.</creatorcontrib><description>BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain (
sn
2) associate with one core dimer while the other acyl chain (
sn
1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization.
Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0494-5</identifier><identifier>PMID: 32929280</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535/1266 ; 631/80/82 ; 82/58 ; Apoptosis ; BAX protein ; bcl-2 Homologous Antagonist-Killer Protein - chemistry ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; Binding Sites ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chains ; Crystal structure ; Crystallography, X-Ray ; Detergents ; Dimers ; Domains ; Humans ; Interfaces ; Life Sciences ; Lipids ; Membrane Biology ; Membrane Lipids - chemistry ; Membrane Lipids - metabolism ; Membrane proteins ; Membranes ; Mitochondria ; Molecular Docking Simulation ; Monomers ; Mutagenesis ; Oligomerization ; Oligomers ; Phospholipids ; Pore formation ; Pore-forming proteins ; Protein Binding ; Protein Multimerization ; Protein Structure ; Proteins</subject><ispartof>Nature structural & molecular biology, 2020-11, Vol.27 (11), p.1024-1031</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</citedby><cites>FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</cites><orcidid>0000-0003-0198-9108 ; 0000-0001-5684-8236 ; 0000-0002-1298-9034 ; 0000-0002-2594-496X ; 0000-0001-8894-4249 ; 0000-0002-9702-7319 ; 0000-0003-0195-3949 ; 0000-0002-5767-7624 ; 0000-0003-0498-1910 ; 0000-0001-5061-6995 ; 0000-0001-8537-4041 ; 0000-0003-2091-2237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0494-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0494-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32929280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cowan, Angus D.</creatorcontrib><creatorcontrib>Smith, Nicholas A.</creatorcontrib><creatorcontrib>Sandow, Jarrod J.</creatorcontrib><creatorcontrib>Kapp, Eugene A.</creatorcontrib><creatorcontrib>Rustam, Yepy H.</creatorcontrib><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Brouwer, Jason M.</creatorcontrib><creatorcontrib>Bernardini, Jonathan P.</creatorcontrib><creatorcontrib>Roy, Michael J.</creatorcontrib><creatorcontrib>Wardak, Ahmad Z.</creatorcontrib><creatorcontrib>Tan, Iris K.</creatorcontrib><creatorcontrib>Webb, Andrew I.</creatorcontrib><creatorcontrib>Gulbis, Jacqueline M.</creatorcontrib><creatorcontrib>Smith, Brian J.</creatorcontrib><creatorcontrib>Reid, Gavin E.</creatorcontrib><creatorcontrib>Dewson, Grant</creatorcontrib><creatorcontrib>Colman, Peter M.</creatorcontrib><creatorcontrib>Czabotar, Peter E.</creatorcontrib><title>BAK core dimers bind lipids and can be bridged by them</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain (
sn
2) associate with one core dimer while the other acyl chain (
sn
1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization.
Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.</description><subject>631/535/1266</subject><subject>631/80/82</subject><subject>82/58</subject><subject>Apoptosis</subject><subject>BAX protein</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - chemistry</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chains</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Detergents</subject><subject>Dimers</subject><subject>Domains</subject><subject>Humans</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Membrane Biology</subject><subject>Membrane Lipids - chemistry</subject><subject>Membrane Lipids - metabolism</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Molecular Docking Simulation</subject><subject>Monomers</subject><subject>Mutagenesis</subject><subject>Oligomerization</subject><subject>Oligomers</subject><subject>Phospholipids</subject><subject>Pore formation</subject><subject>Pore-forming proteins</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Proteins</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EoqXwAWyQJdYBP-t4WSpeohIbWFt-TEqqJil2uujf4yqlrNAs5kpz587oIHRNyR0lvLxPgkotCsJIQUQW8gSNqRSy0LqUp0et-QhdpLQihEmp-DkacaZzlWSMpg-zN-y7CDjUDcSEXd0GvK43dUjYZultix1gF-uwhIDdDvdf0Fyis8quE1wd-gR9Pj1-zF-Kxfvz63y2KDxXrC-o8FpVwXKQ3HJt878lWMKDqDyTDJTjFEpnhVLMV1rLqQIoRVVOGXWUUD5Bt0PuJnbfW0i9WXXb2OaThglFJWcZRHbRweVjl1KEymxi3di4M5SYPSkzkDKZlNmTMjLv3BySt66BcNz4RZMNbDCkPGqXEP9O_5_6A6w5cKM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Cowan, Angus D.</creator><creator>Smith, Nicholas A.</creator><creator>Sandow, Jarrod J.</creator><creator>Kapp, Eugene A.</creator><creator>Rustam, Yepy H.</creator><creator>Murphy, James M.</creator><creator>Brouwer, Jason M.</creator><creator>Bernardini, Jonathan P.</creator><creator>Roy, Michael J.</creator><creator>Wardak, Ahmad Z.</creator><creator>Tan, Iris K.</creator><creator>Webb, Andrew I.</creator><creator>Gulbis, Jacqueline M.</creator><creator>Smith, Brian J.</creator><creator>Reid, Gavin E.</creator><creator>Dewson, Grant</creator><creator>Colman, Peter M.</creator><creator>Czabotar, Peter E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0198-9108</orcidid><orcidid>https://orcid.org/0000-0001-5684-8236</orcidid><orcidid>https://orcid.org/0000-0002-1298-9034</orcidid><orcidid>https://orcid.org/0000-0002-2594-496X</orcidid><orcidid>https://orcid.org/0000-0001-8894-4249</orcidid><orcidid>https://orcid.org/0000-0002-9702-7319</orcidid><orcidid>https://orcid.org/0000-0003-0195-3949</orcidid><orcidid>https://orcid.org/0000-0002-5767-7624</orcidid><orcidid>https://orcid.org/0000-0003-0498-1910</orcidid><orcidid>https://orcid.org/0000-0001-5061-6995</orcidid><orcidid>https://orcid.org/0000-0001-8537-4041</orcidid><orcidid>https://orcid.org/0000-0003-2091-2237</orcidid></search><sort><creationdate>20201101</creationdate><title>BAK core dimers bind lipids and can be bridged by them</title><author>Cowan, Angus D. ; Smith, Nicholas A. ; Sandow, Jarrod J. ; Kapp, Eugene A. ; Rustam, Yepy H. ; Murphy, James M. ; Brouwer, Jason M. ; Bernardini, Jonathan P. ; Roy, Michael J. ; Wardak, Ahmad Z. ; Tan, Iris K. ; Webb, Andrew I. ; Gulbis, Jacqueline M. ; Smith, Brian J. ; Reid, Gavin E. ; Dewson, Grant ; Colman, Peter M. ; Czabotar, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-14c97fda3e53a39a4158ea03d4fc252e7b31e8ba4772cf99567ee84f8621b1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/535/1266</topic><topic>631/80/82</topic><topic>82/58</topic><topic>Apoptosis</topic><topic>BAX protein</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - chemistry</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chains</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Detergents</topic><topic>Dimers</topic><topic>Domains</topic><topic>Humans</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Membrane Biology</topic><topic>Membrane Lipids - chemistry</topic><topic>Membrane Lipids - metabolism</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Molecular Docking Simulation</topic><topic>Monomers</topic><topic>Mutagenesis</topic><topic>Oligomerization</topic><topic>Oligomers</topic><topic>Phospholipids</topic><topic>Pore formation</topic><topic>Pore-forming proteins</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowan, Angus D.</creatorcontrib><creatorcontrib>Smith, Nicholas A.</creatorcontrib><creatorcontrib>Sandow, Jarrod J.</creatorcontrib><creatorcontrib>Kapp, Eugene A.</creatorcontrib><creatorcontrib>Rustam, Yepy H.</creatorcontrib><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Brouwer, Jason M.</creatorcontrib><creatorcontrib>Bernardini, Jonathan P.</creatorcontrib><creatorcontrib>Roy, Michael J.</creatorcontrib><creatorcontrib>Wardak, Ahmad Z.</creatorcontrib><creatorcontrib>Tan, Iris K.</creatorcontrib><creatorcontrib>Webb, Andrew I.</creatorcontrib><creatorcontrib>Gulbis, Jacqueline M.</creatorcontrib><creatorcontrib>Smith, Brian J.</creatorcontrib><creatorcontrib>Reid, Gavin E.</creatorcontrib><creatorcontrib>Dewson, Grant</creatorcontrib><creatorcontrib>Colman, Peter M.</creatorcontrib><creatorcontrib>Czabotar, Peter E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowan, Angus D.</au><au>Smith, Nicholas A.</au><au>Sandow, Jarrod J.</au><au>Kapp, Eugene A.</au><au>Rustam, Yepy H.</au><au>Murphy, James M.</au><au>Brouwer, Jason M.</au><au>Bernardini, Jonathan P.</au><au>Roy, Michael J.</au><au>Wardak, Ahmad Z.</au><au>Tan, Iris K.</au><au>Webb, Andrew I.</au><au>Gulbis, Jacqueline M.</au><au>Smith, Brian J.</au><au>Reid, Gavin E.</au><au>Dewson, Grant</au><au>Colman, Peter M.</au><au>Czabotar, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BAK core dimers bind lipids and can be bridged by them</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>27</volume><issue>11</issue><spage>1024</spage><epage>1031</epage><pages>1024-1031</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>BAK and BAX are essential mediators of apoptosis that oligomerize in response to death cues, thereby causing permeabilization of the mitochondrial outer membrane. Their transition from quiescent monomers to pore-forming oligomers involves a well-characterized symmetric dimer intermediate. However, no essential secondary interface that can be disrupted by mutagenesis has been identified. Here we describe crystal structures of human BAK core domain (α2–α5) dimers that reveal preferred binding sites for membrane lipids and detergents. The phospholipid headgroup and one acyl chain (
sn
2) associate with one core dimer while the other acyl chain (
sn
1) associates with a neighboring core dimer, suggesting a mechanism by which lipids contribute to the oligomerization of BAK. Our data support a model in which, unlike for other pore-forming proteins whose monomers assemble into oligomers primarily through protein–protein interfaces, the membrane itself plays a role in BAK and BAX oligomerization.
Crystal structures of BAK core domain dimers suggest a mechanism by which lipids contribute to the oligomerization of BAK, which is essential for BAK-mediated permeabilization of the mitochondrial outer membrane.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32929280</pmid><doi>10.1038/s41594-020-0494-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0198-9108</orcidid><orcidid>https://orcid.org/0000-0001-5684-8236</orcidid><orcidid>https://orcid.org/0000-0002-1298-9034</orcidid><orcidid>https://orcid.org/0000-0002-2594-496X</orcidid><orcidid>https://orcid.org/0000-0001-8894-4249</orcidid><orcidid>https://orcid.org/0000-0002-9702-7319</orcidid><orcidid>https://orcid.org/0000-0003-0195-3949</orcidid><orcidid>https://orcid.org/0000-0002-5767-7624</orcidid><orcidid>https://orcid.org/0000-0003-0498-1910</orcidid><orcidid>https://orcid.org/0000-0001-5061-6995</orcidid><orcidid>https://orcid.org/0000-0001-8537-4041</orcidid><orcidid>https://orcid.org/0000-0003-2091-2237</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2020-11, Vol.27 (11), p.1024-1031 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_journals_2471532103 |
source | MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink (Online service) |
subjects | 631/535/1266 631/80/82 82/58 Apoptosis BAX protein bcl-2 Homologous Antagonist-Killer Protein - chemistry bcl-2 Homologous Antagonist-Killer Protein - metabolism Binding Sites Biochemistry Biological Microscopy Biomedical and Life Sciences Chains Crystal structure Crystallography, X-Ray Detergents Dimers Domains Humans Interfaces Life Sciences Lipids Membrane Biology Membrane Lipids - chemistry Membrane Lipids - metabolism Membrane proteins Membranes Mitochondria Molecular Docking Simulation Monomers Mutagenesis Oligomerization Oligomers Phospholipids Pore formation Pore-forming proteins Protein Binding Protein Multimerization Protein Structure Proteins |
title | BAK core dimers bind lipids and can be bridged by them |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BAK%20core%20dimers%20bind%20lipids%20and%20can%20be%20bridged%20by%20them&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Cowan,%20Angus%20D.&rft.date=2020-11-01&rft.volume=27&rft.issue=11&rft.spage=1024&rft.epage=1031&rft.pages=1024-1031&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0494-5&rft_dat=%3Cproquest_cross%3E2471532103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471532103&rft_id=info:pmid/32929280&rfr_iscdi=true |