Prediction of the sequence-specific cleavage activity of Cas9 variants

Several Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme’s specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2020-11, Vol.38 (11), p.1328-1336
Hauptverfasser: Kim, Nahye, Kim, Hui Kwon, Lee, Sungtae, Seo, Jung Hwa, Choi, Jae Woo, Park, Jinman, Min, Seonwoo, Yoon, Sungroh, Cho, Sung-Rae, Kim, Hyongbum Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1336
container_issue 11
container_start_page 1328
container_title Nature biotechnology
container_volume 38
creator Kim, Nahye
Kim, Hui Kwon
Lee, Sungtae
Seo, Jung Hwa
Choi, Jae Woo
Park, Jinman
Min, Seonwoo
Yoon, Sungroh
Cho, Sung-Rae
Kim, Hyongbum Henry
description Several Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme’s specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computational models to predict the sequence-specific activity of 13 SpCas9 variants, we first assessed their cleavage efficiency at 26,891 target sequences. We found that, of the 256 possible four-nucleotide NNNN sequences, 156 can be used as a PAM by at least one of the SpCas9 variants. For the high-fidelity variants, overall activity could be ranked as SpCas9 ≥ Sniper-Cas9 > eSpCas9(1.1) > SpCas9-HF1 > HypaCas9 ≈ xCas9 >> evoCas9, whereas their overall specificities could be ranked as evoCas9 >> HypaCas9 ≥ SpCas9-HF1 ≈ eSpCas9(1.1) > xCas9 > Sniper-Cas9 > SpCas9. Using these data, we developed 16 deep-learning-based computational models that accurately predict the activity of these variants at any target sequence. Deep-learning models predict the Cas9 variant with optimal activity and specificity for any target sequence.
doi_str_mv 10.1038/s41587-020-0537-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471531027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640556248</galeid><sourcerecordid>A640556248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-7a067e434888f41acd39ef470b9b7d047bd1d3f7c9433495e9c949e9649981923</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMotlZ_gDey4JXg1mTztbksh1YLhYpftyGbnWxTztk9ZrIH--_NYav1gIIMZIbM807C8BLyktFTRnn7DgWTra5pQ2squa7NI3LMpFA1U0Y9LjXdd5lUR-QZ4i2lVAmlnpIj3kgmWCOPycXHBH30OU5jNYUq30CF8H2G0UONW_AxRF_5NbidG6ByBdzFfLdHVw5NtXMpujHjc_IkuDXCi_t8Qr5enH9Zfaivrt9frs6uaq8YzbV2VGkQXLRtGwRzvucGgtC0M53uqdBdz3oetDeCc2EkmFIZMEoY0zLT8BPyepm7TVP5JWZ7O81pLE_aRmgmOaONfqAGtwYbxzDl5PwmordnSlApVSPaQp3-hSrRwyb6aYQQy_2B4M2BoDAZfuTBzYj28vOn_2evvx2yb_9guxnjCFgOjMNNxkVygLMF92lCTBDsNsWNS3eWUbv3hV18YYsv7N4X1hTNq_u9zd0G-t-KX0YoQLMAWFrjAOlhsf-e-hOokr1b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471531027</pqid></control><display><type>article</type><title>Prediction of the sequence-specific cleavage activity of Cas9 variants</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kim, Nahye ; Kim, Hui Kwon ; Lee, Sungtae ; Seo, Jung Hwa ; Choi, Jae Woo ; Park, Jinman ; Min, Seonwoo ; Yoon, Sungroh ; Cho, Sung-Rae ; Kim, Hyongbum Henry</creator><creatorcontrib>Kim, Nahye ; Kim, Hui Kwon ; Lee, Sungtae ; Seo, Jung Hwa ; Choi, Jae Woo ; Park, Jinman ; Min, Seonwoo ; Yoon, Sungroh ; Cho, Sung-Rae ; Kim, Hyongbum Henry</creatorcontrib><description>Several Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme’s specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computational models to predict the sequence-specific activity of 13 SpCas9 variants, we first assessed their cleavage efficiency at 26,891 target sequences. We found that, of the 256 possible four-nucleotide NNNN sequences, 156 can be used as a PAM by at least one of the SpCas9 variants. For the high-fidelity variants, overall activity could be ranked as SpCas9 ≥ Sniper-Cas9 &gt; eSpCas9(1.1) &gt; SpCas9-HF1 &gt; HypaCas9 ≈ xCas9 &gt;&gt; evoCas9, whereas their overall specificities could be ranked as evoCas9 &gt;&gt; HypaCas9 ≥ SpCas9-HF1 ≈ eSpCas9(1.1) &gt; xCas9 &gt; Sniper-Cas9 &gt; SpCas9. Using these data, we developed 16 deep-learning-based computational models that accurately predict the activity of these variants at any target sequence. Deep-learning models predict the Cas9 variant with optimal activity and specificity for any target sequence.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0537-9</identifier><identifier>PMID: 32514125</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/1511 ; 631/1647/1513/1967/3196 ; Agriculture ; Base Sequence ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cleavage ; Computer applications ; CRISPR-Associated Protein 9 - genetics ; Deep Learning ; Forecasts and trends ; Gene Library ; Genomes ; HEK293 Cells ; Humans ; Identification and classification ; INDEL Mutation - genetics ; Intraspecific genetic variation ; Learning ; Lentivirus - genetics ; Life Sciences ; Machine learning ; Mathematical models ; Medical schools ; Medicine ; Models, Genetic ; Mutation - genetics ; Nucleotides ; Streptococcus pyogenes ; Technology application ; Transcription factors ; Transfer RNA ; University colleges ; Varieties</subject><ispartof>Nature biotechnology, 2020-11, Vol.38 (11), p.1328-1336</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-7a067e434888f41acd39ef470b9b7d047bd1d3f7c9433495e9c949e9649981923</citedby><cites>FETCH-LOGICAL-c610t-7a067e434888f41acd39ef470b9b7d047bd1d3f7c9433495e9c949e9649981923</cites><orcidid>0000-0003-0694-9244 ; 0000-0002-4693-738X ; 0000-0002-2367-197X ; 0000-0002-8489-7972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32514125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Nahye</creatorcontrib><creatorcontrib>Kim, Hui Kwon</creatorcontrib><creatorcontrib>Lee, Sungtae</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Choi, Jae Woo</creatorcontrib><creatorcontrib>Park, Jinman</creatorcontrib><creatorcontrib>Min, Seonwoo</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><creatorcontrib>Cho, Sung-Rae</creatorcontrib><creatorcontrib>Kim, Hyongbum Henry</creatorcontrib><title>Prediction of the sequence-specific cleavage activity of Cas9 variants</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Several Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme’s specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computational models to predict the sequence-specific activity of 13 SpCas9 variants, we first assessed their cleavage efficiency at 26,891 target sequences. We found that, of the 256 possible four-nucleotide NNNN sequences, 156 can be used as a PAM by at least one of the SpCas9 variants. For the high-fidelity variants, overall activity could be ranked as SpCas9 ≥ Sniper-Cas9 &gt; eSpCas9(1.1) &gt; SpCas9-HF1 &gt; HypaCas9 ≈ xCas9 &gt;&gt; evoCas9, whereas their overall specificities could be ranked as evoCas9 &gt;&gt; HypaCas9 ≥ SpCas9-HF1 ≈ eSpCas9(1.1) &gt; xCas9 &gt; Sniper-Cas9 &gt; SpCas9. Using these data, we developed 16 deep-learning-based computational models that accurately predict the activity of these variants at any target sequence. Deep-learning models predict the Cas9 variant with optimal activity and specificity for any target sequence.</description><subject>631/1647/1511</subject><subject>631/1647/1513/1967/3196</subject><subject>Agriculture</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cleavage</subject><subject>Computer applications</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>Deep Learning</subject><subject>Forecasts and trends</subject><subject>Gene Library</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>INDEL Mutation - genetics</subject><subject>Intraspecific genetic variation</subject><subject>Learning</subject><subject>Lentivirus - genetics</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Models, Genetic</subject><subject>Mutation - genetics</subject><subject>Nucleotides</subject><subject>Streptococcus pyogenes</subject><subject>Technology application</subject><subject>Transcription factors</subject><subject>Transfer RNA</subject><subject>University colleges</subject><subject>Varieties</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFTEQhoMotlZ_gDey4JXg1mTztbksh1YLhYpftyGbnWxTztk9ZrIH--_NYav1gIIMZIbM807C8BLyktFTRnn7DgWTra5pQ2squa7NI3LMpFA1U0Y9LjXdd5lUR-QZ4i2lVAmlnpIj3kgmWCOPycXHBH30OU5jNYUq30CF8H2G0UONW_AxRF_5NbidG6ByBdzFfLdHVw5NtXMpujHjc_IkuDXCi_t8Qr5enH9Zfaivrt9frs6uaq8YzbV2VGkQXLRtGwRzvucGgtC0M53uqdBdz3oetDeCc2EkmFIZMEoY0zLT8BPyepm7TVP5JWZ7O81pLE_aRmgmOaONfqAGtwYbxzDl5PwmordnSlApVSPaQp3-hSrRwyb6aYQQy_2B4M2BoDAZfuTBzYj28vOn_2evvx2yb_9guxnjCFgOjMNNxkVygLMF92lCTBDsNsWNS3eWUbv3hV18YYsv7N4X1hTNq_u9zd0G-t-KX0YoQLMAWFrjAOlhsf-e-hOokr1b</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kim, Nahye</creator><creator>Kim, Hui Kwon</creator><creator>Lee, Sungtae</creator><creator>Seo, Jung Hwa</creator><creator>Choi, Jae Woo</creator><creator>Park, Jinman</creator><creator>Min, Seonwoo</creator><creator>Yoon, Sungroh</creator><creator>Cho, Sung-Rae</creator><creator>Kim, Hyongbum Henry</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0694-9244</orcidid><orcidid>https://orcid.org/0000-0002-4693-738X</orcidid><orcidid>https://orcid.org/0000-0002-2367-197X</orcidid><orcidid>https://orcid.org/0000-0002-8489-7972</orcidid></search><sort><creationdate>20201101</creationdate><title>Prediction of the sequence-specific cleavage activity of Cas9 variants</title><author>Kim, Nahye ; Kim, Hui Kwon ; Lee, Sungtae ; Seo, Jung Hwa ; Choi, Jae Woo ; Park, Jinman ; Min, Seonwoo ; Yoon, Sungroh ; Cho, Sung-Rae ; Kim, Hyongbum Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-7a067e434888f41acd39ef470b9b7d047bd1d3f7c9433495e9c949e9649981923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/1511</topic><topic>631/1647/1513/1967/3196</topic><topic>Agriculture</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cleavage</topic><topic>Computer applications</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>Deep Learning</topic><topic>Forecasts and trends</topic><topic>Gene Library</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>INDEL Mutation - genetics</topic><topic>Intraspecific genetic variation</topic><topic>Learning</topic><topic>Lentivirus - genetics</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Models, Genetic</topic><topic>Mutation - genetics</topic><topic>Nucleotides</topic><topic>Streptococcus pyogenes</topic><topic>Technology application</topic><topic>Transcription factors</topic><topic>Transfer RNA</topic><topic>University colleges</topic><topic>Varieties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Nahye</creatorcontrib><creatorcontrib>Kim, Hui Kwon</creatorcontrib><creatorcontrib>Lee, Sungtae</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Choi, Jae Woo</creatorcontrib><creatorcontrib>Park, Jinman</creatorcontrib><creatorcontrib>Min, Seonwoo</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><creatorcontrib>Cho, Sung-Rae</creatorcontrib><creatorcontrib>Kim, Hyongbum Henry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Nahye</au><au>Kim, Hui Kwon</au><au>Lee, Sungtae</au><au>Seo, Jung Hwa</au><au>Choi, Jae Woo</au><au>Park, Jinman</au><au>Min, Seonwoo</au><au>Yoon, Sungroh</au><au>Cho, Sung-Rae</au><au>Kim, Hyongbum Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the sequence-specific cleavage activity of Cas9 variants</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>38</volume><issue>11</issue><spage>1328</spage><epage>1336</epage><pages>1328-1336</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Several Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme’s specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computational models to predict the sequence-specific activity of 13 SpCas9 variants, we first assessed their cleavage efficiency at 26,891 target sequences. We found that, of the 256 possible four-nucleotide NNNN sequences, 156 can be used as a PAM by at least one of the SpCas9 variants. For the high-fidelity variants, overall activity could be ranked as SpCas9 ≥ Sniper-Cas9 &gt; eSpCas9(1.1) &gt; SpCas9-HF1 &gt; HypaCas9 ≈ xCas9 &gt;&gt; evoCas9, whereas their overall specificities could be ranked as evoCas9 &gt;&gt; HypaCas9 ≥ SpCas9-HF1 ≈ eSpCas9(1.1) &gt; xCas9 &gt; Sniper-Cas9 &gt; SpCas9. Using these data, we developed 16 deep-learning-based computational models that accurately predict the activity of these variants at any target sequence. Deep-learning models predict the Cas9 variant with optimal activity and specificity for any target sequence.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32514125</pmid><doi>10.1038/s41587-020-0537-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0694-9244</orcidid><orcidid>https://orcid.org/0000-0002-4693-738X</orcidid><orcidid>https://orcid.org/0000-0002-2367-197X</orcidid><orcidid>https://orcid.org/0000-0002-8489-7972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2020-11, Vol.38 (11), p.1328-1336
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_journals_2471531027
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/1647/1511
631/1647/1513/1967/3196
Agriculture
Base Sequence
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cleavage
Computer applications
CRISPR-Associated Protein 9 - genetics
Deep Learning
Forecasts and trends
Gene Library
Genomes
HEK293 Cells
Humans
Identification and classification
INDEL Mutation - genetics
Intraspecific genetic variation
Learning
Lentivirus - genetics
Life Sciences
Machine learning
Mathematical models
Medical schools
Medicine
Models, Genetic
Mutation - genetics
Nucleotides
Streptococcus pyogenes
Technology application
Transcription factors
Transfer RNA
University colleges
Varieties
title Prediction of the sequence-specific cleavage activity of Cas9 variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20sequence-specific%20cleavage%20activity%20of%20Cas9%20variants&rft.jtitle=Nature%20biotechnology&rft.au=Kim,%20Nahye&rft.date=2020-11-01&rft.volume=38&rft.issue=11&rft.spage=1328&rft.epage=1336&rft.pages=1328-1336&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0537-9&rft_dat=%3Cgale_proqu%3EA640556248%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471531027&rft_id=info:pmid/32514125&rft_galeid=A640556248&rfr_iscdi=true