Defect structure of TiS3 single crystals with different resistivity

A defect structure of single-crystal whiskers TiS 3 with different resistivity has been studied by the high resolution scanning transmission electron microscopy. The whiskers crystallize in one monoclinic lattice, but in two variants, A and B. The high-resistivity whiskers crystallize according to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021, Vol.56 (3), p.2150-2162
Hauptverfasser: Trunkin, I. N., Gorlova, I. G., Bolotina, N. B., Bondarenko, V. I., Chesnokov, Y. M., Vasiliev, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2162
container_issue 3
container_start_page 2150
container_title Journal of materials science
container_volume 56
creator Trunkin, I. N.
Gorlova, I. G.
Bolotina, N. B.
Bondarenko, V. I.
Chesnokov, Y. M.
Vasiliev, A. L.
description A defect structure of single-crystal whiskers TiS 3 with different resistivity has been studied by the high resolution scanning transmission electron microscopy. The whiskers crystallize in one monoclinic lattice, but in two variants, A and B. The high-resistivity whiskers crystallize according to the A-variant, while the crystal structure of the low-resistivity whiskers is a mixture of the A- and B-variants. All planar defects in the crystals are described in terms of twinning with the twin boundaries running parallel to the (001) plane and located in the middle of the atomic layers. Sulfur vacancies are found both in high- and low-resistivity whiskers, but the density of vacancies is noticeably higher in the low-resistivity ones. It is shown that the magnitude and temperature dependence of the resistivity are determined by the density of vacancies and the number of B-domains in the TiS 3 crystals, whereas the effect of twinning on the resistivity is negligible.
doi_str_mv 10.1007/s10853-020-05357-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471527139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471527139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2340-ccbf381f6ef54d0e161d282f82d5b1681f745d396b87be0107fc645c55d707873</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTePCbTpdQnFFxY16GTSWpKnalJRum_NzqCO1d3cb5zLnyEnCNcIoC-Sgi1Egw4MFBCaQYHZIJKCyZrEIdkAsA547LCY3KS0gYAlOY4IfMb553NNOU42DxER3tPl-FZ0BS69dZRG_cpr7aJfob8StvgvYuuyzS6FFIOHyHvT8mRL4Q7-71T8nJ3u5w_sMXT_eP8esEsFxKYtY0XNfrKeSVbcFhhy2vua96qBquSaKlaMauaWjcOELS3lVRWqVaDrrWYkotxdxf798GlbDb9ELvy0nCpUXGNYlYoPlI29ilF580uhrdV3BsE8y3LjLJMkWV-ZBkoJTGWUoG7tYt_0_-0vgAi_mu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471527139</pqid></control><display><type>article</type><title>Defect structure of TiS3 single crystals with different resistivity</title><source>Springer Nature - Complete Springer Journals</source><creator>Trunkin, I. N. ; Gorlova, I. G. ; Bolotina, N. B. ; Bondarenko, V. I. ; Chesnokov, Y. M. ; Vasiliev, A. L.</creator><creatorcontrib>Trunkin, I. N. ; Gorlova, I. G. ; Bolotina, N. B. ; Bondarenko, V. I. ; Chesnokov, Y. M. ; Vasiliev, A. L.</creatorcontrib><description>A defect structure of single-crystal whiskers TiS 3 with different resistivity has been studied by the high resolution scanning transmission electron microscopy. The whiskers crystallize in one monoclinic lattice, but in two variants, A and B. The high-resistivity whiskers crystallize according to the A-variant, while the crystal structure of the low-resistivity whiskers is a mixture of the A- and B-variants. All planar defects in the crystals are described in terms of twinning with the twin boundaries running parallel to the (001) plane and located in the middle of the atomic layers. Sulfur vacancies are found both in high- and low-resistivity whiskers, but the density of vacancies is noticeably higher in the low-resistivity ones. It is shown that the magnitude and temperature dependence of the resistivity are determined by the density of vacancies and the number of B-domains in the TiS 3 crystals, whereas the effect of twinning on the resistivity is negligible.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05357-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystal defects ; Crystal structure ; Crystallography and Scattering Methods ; Crystals ; Density ; Electrical resistivity ; Lattice vacancies ; Materials Science ; Monoclinic lattice ; Polymer Sciences ; Scanning transmission electron microscopy ; Single crystals ; Solid Mechanics ; Temperature dependence ; Twin boundaries ; Twinning</subject><ispartof>Journal of materials science, 2021, Vol.56 (3), p.2150-2162</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2340-ccbf381f6ef54d0e161d282f82d5b1681f745d396b87be0107fc645c55d707873</citedby><cites>FETCH-LOGICAL-c2340-ccbf381f6ef54d0e161d282f82d5b1681f745d396b87be0107fc645c55d707873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05357-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05357-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Trunkin, I. N.</creatorcontrib><creatorcontrib>Gorlova, I. G.</creatorcontrib><creatorcontrib>Bolotina, N. B.</creatorcontrib><creatorcontrib>Bondarenko, V. I.</creatorcontrib><creatorcontrib>Chesnokov, Y. M.</creatorcontrib><creatorcontrib>Vasiliev, A. L.</creatorcontrib><title>Defect structure of TiS3 single crystals with different resistivity</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A defect structure of single-crystal whiskers TiS 3 with different resistivity has been studied by the high resolution scanning transmission electron microscopy. The whiskers crystallize in one monoclinic lattice, but in two variants, A and B. The high-resistivity whiskers crystallize according to the A-variant, while the crystal structure of the low-resistivity whiskers is a mixture of the A- and B-variants. All planar defects in the crystals are described in terms of twinning with the twin boundaries running parallel to the (001) plane and located in the middle of the atomic layers. Sulfur vacancies are found both in high- and low-resistivity whiskers, but the density of vacancies is noticeably higher in the low-resistivity ones. It is shown that the magnitude and temperature dependence of the resistivity are determined by the density of vacancies and the number of B-domains in the TiS 3 crystals, whereas the effect of twinning on the resistivity is negligible.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>Density</subject><subject>Electrical resistivity</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Monoclinic lattice</subject><subject>Polymer Sciences</subject><subject>Scanning transmission electron microscopy</subject><subject>Single crystals</subject><subject>Solid Mechanics</subject><subject>Temperature dependence</subject><subject>Twin boundaries</subject><subject>Twinning</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTePCbTpdQnFFxY16GTSWpKnalJRum_NzqCO1d3cb5zLnyEnCNcIoC-Sgi1Egw4MFBCaQYHZIJKCyZrEIdkAsA547LCY3KS0gYAlOY4IfMb553NNOU42DxER3tPl-FZ0BS69dZRG_cpr7aJfob8StvgvYuuyzS6FFIOHyHvT8mRL4Q7-71T8nJ3u5w_sMXT_eP8esEsFxKYtY0XNfrKeSVbcFhhy2vua96qBquSaKlaMauaWjcOELS3lVRWqVaDrrWYkotxdxf798GlbDb9ELvy0nCpUXGNYlYoPlI29ilF580uhrdV3BsE8y3LjLJMkWV-ZBkoJTGWUoG7tYt_0_-0vgAi_mu0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Trunkin, I. N.</creator><creator>Gorlova, I. G.</creator><creator>Bolotina, N. B.</creator><creator>Bondarenko, V. I.</creator><creator>Chesnokov, Y. M.</creator><creator>Vasiliev, A. L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Defect structure of TiS3 single crystals with different resistivity</title><author>Trunkin, I. N. ; Gorlova, I. G. ; Bolotina, N. B. ; Bondarenko, V. I. ; Chesnokov, Y. M. ; Vasiliev, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2340-ccbf381f6ef54d0e161d282f82d5b1681f745d396b87be0107fc645c55d707873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>Density</topic><topic>Electrical resistivity</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Monoclinic lattice</topic><topic>Polymer Sciences</topic><topic>Scanning transmission electron microscopy</topic><topic>Single crystals</topic><topic>Solid Mechanics</topic><topic>Temperature dependence</topic><topic>Twin boundaries</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trunkin, I. N.</creatorcontrib><creatorcontrib>Gorlova, I. G.</creatorcontrib><creatorcontrib>Bolotina, N. B.</creatorcontrib><creatorcontrib>Bondarenko, V. I.</creatorcontrib><creatorcontrib>Chesnokov, Y. M.</creatorcontrib><creatorcontrib>Vasiliev, A. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trunkin, I. N.</au><au>Gorlova, I. G.</au><au>Bolotina, N. B.</au><au>Bondarenko, V. I.</au><au>Chesnokov, Y. M.</au><au>Vasiliev, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect structure of TiS3 single crystals with different resistivity</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021</date><risdate>2021</risdate><volume>56</volume><issue>3</issue><spage>2150</spage><epage>2162</epage><pages>2150-2162</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A defect structure of single-crystal whiskers TiS 3 with different resistivity has been studied by the high resolution scanning transmission electron microscopy. The whiskers crystallize in one monoclinic lattice, but in two variants, A and B. The high-resistivity whiskers crystallize according to the A-variant, while the crystal structure of the low-resistivity whiskers is a mixture of the A- and B-variants. All planar defects in the crystals are described in terms of twinning with the twin boundaries running parallel to the (001) plane and located in the middle of the atomic layers. Sulfur vacancies are found both in high- and low-resistivity whiskers, but the density of vacancies is noticeably higher in the low-resistivity ones. It is shown that the magnitude and temperature dependence of the resistivity are determined by the density of vacancies and the number of B-domains in the TiS 3 crystals, whereas the effect of twinning on the resistivity is negligible.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05357-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021, Vol.56 (3), p.2150-2162
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2471527139
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Crystal defects
Crystal structure
Crystallography and Scattering Methods
Crystals
Density
Electrical resistivity
Lattice vacancies
Materials Science
Monoclinic lattice
Polymer Sciences
Scanning transmission electron microscopy
Single crystals
Solid Mechanics
Temperature dependence
Twin boundaries
Twinning
title Defect structure of TiS3 single crystals with different resistivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20structure%20of%20TiS3%20single%20crystals%20with%20different%20resistivity&rft.jtitle=Journal%20of%20materials%20science&rft.au=Trunkin,%20I.%20N.&rft.date=2021&rft.volume=56&rft.issue=3&rft.spage=2150&rft.epage=2162&rft.pages=2150-2162&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05357-0&rft_dat=%3Cproquest_cross%3E2471527139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471527139&rft_id=info:pmid/&rfr_iscdi=true