Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers
With the aim to obtain microwave (MW) absorber possessing simultaneous light weight and broad absorption bandwidth, FeCo imbedded 3D porous carbon network microspheres (3DC@FeCo) were synthesized via spray-drying followed by calcination processes. 3DC@FeCo exhibits 3D porous carbon microspheres stru...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021, Vol.56 (3), p.2212-2225 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2225 |
---|---|
container_issue | 3 |
container_start_page | 2212 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Guo, Yue Sun, Qiaozhi Song, Kai Ding, Jiawei Shi, Chunsheng He, Fang |
description | With the aim to obtain microwave (MW) absorber possessing simultaneous light weight and broad absorption bandwidth, FeCo imbedded 3D porous carbon network microspheres (3DC@FeCo) were synthesized via spray-drying followed by calcination processes. 3DC@FeCo exhibits 3D porous carbon microspheres structure with submicrometer-sized macropores. The FeCo imbedded carbon structure not only restrains the growth and agglomeration of FeCo nanoparticles, but also effectively introduces polarization and suppresses the skin effect from FeCo. In addition, the 3D porous carbon microspheres provide more channels which enhance the multiple reflection for microwave. The microwave absorption performance of 3DC@FeCo can be adjusted through changing the carbonization temperature, and the sample after carbonized at 630 °C (3DC@FeCo-630) shows the best microwave absorption property. It is worth mentioning that there is only 21.8 wt% FeCo in 3DC@FeCo, indicating that the 3DC@FeCo microspheres proposed in this study are one kind of lightweight microwave absorbers. The minimum reflection loss (RL) value of 3DC@FeCo-630 is − 47.4 dB at 6.35 GHz and the effective absorption bandwidth (RL |
doi_str_mv | 10.1007/s10853-020-05424-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471525856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640045760</galeid><sourcerecordid>A640045760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4d4648d30994412b867ecb2e2d8bc00b617d1b9652823cc648be66a44746d5513</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoIdu0XyAnQU45OBn9tfcYNk0bCBTS9iwka-w47Fobjbdpv33lOFByKYNmQPze8KTH2KmACwFQX5KAxqgKJFRgtNSVPWIrYWpV6QbUO7YCkLKS2opj9oHoEQBMLcWKpXs_DWn0Wx6Rhn7kqeM3uEl82AWMESNX13yfcjoQb30OaeS7oc2J9g-YkbgnHnLyMfgx8vlsh_5hesa5L-Sz_4XcB0o5YKaP7H3nt4SfXucJ-3nz-cfma3X37cvt5uquatVaTpWO2uomKlivtRYyNLbGNkiUsQktQLCijiKsrZGNVG1b2IDWeq1rbaMxQp2ws2XvPqenA9LkHtMhl3eSk7oWRprG2EJdLFTvt-iGsUtT9m2piMV7GrEbyv2V1QDa1BaK4PyNoDAT_p56fyByt9_v37JyYefvooyd2-dh5_MfJ8DNqbklNVdScy-pudmRWkRU4LHH_M_3f1R_AVMbmNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471525856</pqid></control><display><type>article</type><title>Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers</title><source>SpringerLink Journals</source><creator>Guo, Yue ; Sun, Qiaozhi ; Song, Kai ; Ding, Jiawei ; Shi, Chunsheng ; He, Fang</creator><creatorcontrib>Guo, Yue ; Sun, Qiaozhi ; Song, Kai ; Ding, Jiawei ; Shi, Chunsheng ; He, Fang</creatorcontrib><description>With the aim to obtain microwave (MW) absorber possessing simultaneous light weight and broad absorption bandwidth, FeCo imbedded 3D porous carbon network microspheres (3DC@FeCo) were synthesized via spray-drying followed by calcination processes. 3DC@FeCo exhibits 3D porous carbon microspheres structure with submicrometer-sized macropores. The FeCo imbedded carbon structure not only restrains the growth and agglomeration of FeCo nanoparticles, but also effectively introduces polarization and suppresses the skin effect from FeCo. In addition, the 3D porous carbon microspheres provide more channels which enhance the multiple reflection for microwave. The microwave absorption performance of 3DC@FeCo can be adjusted through changing the carbonization temperature, and the sample after carbonized at 630 °C (3DC@FeCo-630) shows the best microwave absorption property. It is worth mentioning that there is only 21.8 wt% FeCo in 3DC@FeCo, indicating that the 3DC@FeCo microspheres proposed in this study are one kind of lightweight microwave absorbers. The minimum reflection loss (RL) value of 3DC@FeCo-630 is − 47.4 dB at 6.35 GHz and the effective absorption bandwidth (RL < − 10 dB) can reach up 5.66 GHz (12.08–17.74 GHz) with the matching thickness of only 2.7 mm. The excellent microwave absorption ability can be attributed to favorable impedance matching, strong dielectric loss, magnetic loss, FeCo imbedded carbon and unique 3D porous structure. 3DC@FeCo microspheres as broadband and lightweight microwave absorbers exhibit a promising prospect applied in complex electromagnetic environments.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05424-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bandwidths ; Broadband ; Broadband transmission ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composites & Nanocomposites ; Crystallography and Scattering Methods ; Dielectric loss ; Dielectric strength ; Impedance matching ; Lightweight ; Materials Science ; Microspheres ; Microwave absorbers ; Microwave absorption ; Nanoparticles ; Polymer Sciences ; Reflection ; Skin effect ; Solid Mechanics ; Weight reduction</subject><ispartof>Journal of materials science, 2021, Vol.56 (3), p.2212-2225</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4d4648d30994412b867ecb2e2d8bc00b617d1b9652823cc648be66a44746d5513</citedby><cites>FETCH-LOGICAL-c392t-4d4648d30994412b867ecb2e2d8bc00b617d1b9652823cc648be66a44746d5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05424-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05424-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Guo, Yue</creatorcontrib><creatorcontrib>Sun, Qiaozhi</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Ding, Jiawei</creatorcontrib><creatorcontrib>Shi, Chunsheng</creatorcontrib><creatorcontrib>He, Fang</creatorcontrib><title>Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>With the aim to obtain microwave (MW) absorber possessing simultaneous light weight and broad absorption bandwidth, FeCo imbedded 3D porous carbon network microspheres (3DC@FeCo) were synthesized via spray-drying followed by calcination processes. 3DC@FeCo exhibits 3D porous carbon microspheres structure with submicrometer-sized macropores. The FeCo imbedded carbon structure not only restrains the growth and agglomeration of FeCo nanoparticles, but also effectively introduces polarization and suppresses the skin effect from FeCo. In addition, the 3D porous carbon microspheres provide more channels which enhance the multiple reflection for microwave. The microwave absorption performance of 3DC@FeCo can be adjusted through changing the carbonization temperature, and the sample after carbonized at 630 °C (3DC@FeCo-630) shows the best microwave absorption property. It is worth mentioning that there is only 21.8 wt% FeCo in 3DC@FeCo, indicating that the 3DC@FeCo microspheres proposed in this study are one kind of lightweight microwave absorbers. The minimum reflection loss (RL) value of 3DC@FeCo-630 is − 47.4 dB at 6.35 GHz and the effective absorption bandwidth (RL < − 10 dB) can reach up 5.66 GHz (12.08–17.74 GHz) with the matching thickness of only 2.7 mm. The excellent microwave absorption ability can be attributed to favorable impedance matching, strong dielectric loss, magnetic loss, FeCo imbedded carbon and unique 3D porous structure. 3DC@FeCo microspheres as broadband and lightweight microwave absorbers exhibit a promising prospect applied in complex electromagnetic environments.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>Broadband transmission</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composites & Nanocomposites</subject><subject>Crystallography and Scattering Methods</subject><subject>Dielectric loss</subject><subject>Dielectric strength</subject><subject>Impedance matching</subject><subject>Lightweight</subject><subject>Materials Science</subject><subject>Microspheres</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>Nanoparticles</subject><subject>Polymer Sciences</subject><subject>Reflection</subject><subject>Skin effect</subject><subject>Solid Mechanics</subject><subject>Weight reduction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9r3DAQxUVoIdu0XyAnQU45OBn9tfcYNk0bCBTS9iwka-w47Fobjbdpv33lOFByKYNmQPze8KTH2KmACwFQX5KAxqgKJFRgtNSVPWIrYWpV6QbUO7YCkLKS2opj9oHoEQBMLcWKpXs_DWn0Wx6Rhn7kqeM3uEl82AWMESNX13yfcjoQb30OaeS7oc2J9g-YkbgnHnLyMfgx8vlsh_5hesa5L-Sz_4XcB0o5YKaP7H3nt4SfXucJ-3nz-cfma3X37cvt5uquatVaTpWO2uomKlivtRYyNLbGNkiUsQktQLCijiKsrZGNVG1b2IDWeq1rbaMxQp2ws2XvPqenA9LkHtMhl3eSk7oWRprG2EJdLFTvt-iGsUtT9m2piMV7GrEbyv2V1QDa1BaK4PyNoDAT_p56fyByt9_v37JyYefvooyd2-dh5_MfJ8DNqbklNVdScy-pudmRWkRU4LHH_M_3f1R_AVMbmNI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Guo, Yue</creator><creator>Sun, Qiaozhi</creator><creator>Song, Kai</creator><creator>Ding, Jiawei</creator><creator>Shi, Chunsheng</creator><creator>He, Fang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers</title><author>Guo, Yue ; Sun, Qiaozhi ; Song, Kai ; Ding, Jiawei ; Shi, Chunsheng ; He, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4d4648d30994412b867ecb2e2d8bc00b617d1b9652823cc648be66a44746d5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>Broadband transmission</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composites & Nanocomposites</topic><topic>Crystallography and Scattering Methods</topic><topic>Dielectric loss</topic><topic>Dielectric strength</topic><topic>Impedance matching</topic><topic>Lightweight</topic><topic>Materials Science</topic><topic>Microspheres</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>Nanoparticles</topic><topic>Polymer Sciences</topic><topic>Reflection</topic><topic>Skin effect</topic><topic>Solid Mechanics</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yue</creatorcontrib><creatorcontrib>Sun, Qiaozhi</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Ding, Jiawei</creatorcontrib><creatorcontrib>Shi, Chunsheng</creatorcontrib><creatorcontrib>He, Fang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yue</au><au>Sun, Qiaozhi</au><au>Song, Kai</au><au>Ding, Jiawei</au><au>Shi, Chunsheng</au><au>He, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021</date><risdate>2021</risdate><volume>56</volume><issue>3</issue><spage>2212</spage><epage>2225</epage><pages>2212-2225</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>With the aim to obtain microwave (MW) absorber possessing simultaneous light weight and broad absorption bandwidth, FeCo imbedded 3D porous carbon network microspheres (3DC@FeCo) were synthesized via spray-drying followed by calcination processes. 3DC@FeCo exhibits 3D porous carbon microspheres structure with submicrometer-sized macropores. The FeCo imbedded carbon structure not only restrains the growth and agglomeration of FeCo nanoparticles, but also effectively introduces polarization and suppresses the skin effect from FeCo. In addition, the 3D porous carbon microspheres provide more channels which enhance the multiple reflection for microwave. The microwave absorption performance of 3DC@FeCo can be adjusted through changing the carbonization temperature, and the sample after carbonized at 630 °C (3DC@FeCo-630) shows the best microwave absorption property. It is worth mentioning that there is only 21.8 wt% FeCo in 3DC@FeCo, indicating that the 3DC@FeCo microspheres proposed in this study are one kind of lightweight microwave absorbers. The minimum reflection loss (RL) value of 3DC@FeCo-630 is − 47.4 dB at 6.35 GHz and the effective absorption bandwidth (RL < − 10 dB) can reach up 5.66 GHz (12.08–17.74 GHz) with the matching thickness of only 2.7 mm. The excellent microwave absorption ability can be attributed to favorable impedance matching, strong dielectric loss, magnetic loss, FeCo imbedded carbon and unique 3D porous structure. 3DC@FeCo microspheres as broadband and lightweight microwave absorbers exhibit a promising prospect applied in complex electromagnetic environments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05424-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021, Vol.56 (3), p.2212-2225 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2471525856 |
source | SpringerLink Journals |
subjects | Bandwidths Broadband Broadband transmission Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composites & Nanocomposites Crystallography and Scattering Methods Dielectric loss Dielectric strength Impedance matching Lightweight Materials Science Microspheres Microwave absorbers Microwave absorption Nanoparticles Polymer Sciences Reflection Skin effect Solid Mechanics Weight reduction |
title | Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20FeCo%20imbedded%203D%20porous%20carbon%20microspheres%20as%20broadband%20and%20lightweight%20microwave%20absorbers&rft.jtitle=Journal%20of%20materials%20science&rft.au=Guo,%20Yue&rft.date=2021&rft.volume=56&rft.issue=3&rft.spage=2212&rft.epage=2225&rft.pages=2212-2225&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05424-6&rft_dat=%3Cgale_proqu%3EA640045760%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471525856&rft_id=info:pmid/&rft_galeid=A640045760&rfr_iscdi=true |