Active learning of deep surrogates for PDEs: application to metasurface design
Surrogate models for partial differential equations are widely used in the design of metamaterials to rapidly evaluate the behavior of composable components. However, the training cost of accurate surrogates by machine learning can rapidly increase with the number of variables. For photonic-device m...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2020-10, Vol.6 (1), Article 164 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 6 |
creator | Pestourie, Raphaël Mroueh, Youssef Nguyen, Thanh V. Das, Payel Johnson, Steven G. |
description | Surrogate models for partial differential equations are widely used in the design of metamaterials to rapidly evaluate the behavior of composable components. However, the training cost of accurate surrogates by machine learning can rapidly increase with the number of variables. For photonic-device models, we find that this training becomes especially challenging as design regions grow larger than the optical wavelength. We present an active-learning algorithm that reduces the number of simulations required by more than an order of magnitude for an NN surrogate model of optical-surface components compared to uniform random samples. Results show that the surrogate evaluation is over two orders of magnitude faster than a direct solve, and we demonstrate how this can be exploited to accelerate large-scale engineering optimization. |
doi_str_mv | 10.1038/s41524-020-00431-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471525757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471525757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-53c8301a0c75a63ddc7ecaf8c71dbdc344473104225c8c52c7d9c48ec952811f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWGr_gKeA59XJV7PrrdRahaIe9BzibHbZ0m7WJBX890ZX0JOnmcN7M_AIOWdwyUCUV1EyxWUBHAoAKVjBj8iEg9KFqOZw_Gc_JbMYtwDAKl5yCRPysMDUvTu6czb0Xd9S39DauYHGQwi-tclF2vhAn25W8ZraYdh1aFPne5o83btkM9dYdFmKXdufkZPG7qKb_cwpebldPS_vis3j-n652BQo5iIVSmApgFlArexc1DVqh7YpUbP6tUYhpdSCgeRcYYmKo64rlKXDSvGSsUZMycV4dwj-7eBiMlt_CH1-abjUOYfSSmeKjxQGH2NwjRlCt7fhwzAwX-nMmM7kdOY7neFZEqMUM9y3Lvye_sf6BIW-cFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471525757</pqid></control><display><type>article</type><title>Active learning of deep surrogates for PDEs: application to metasurface design</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pestourie, Raphaël ; Mroueh, Youssef ; Nguyen, Thanh V. ; Das, Payel ; Johnson, Steven G.</creator><creatorcontrib>Pestourie, Raphaël ; Mroueh, Youssef ; Nguyen, Thanh V. ; Das, Payel ; Johnson, Steven G.</creatorcontrib><description>Surrogate models for partial differential equations are widely used in the design of metamaterials to rapidly evaluate the behavior of composable components. However, the training cost of accurate surrogates by machine learning can rapidly increase with the number of variables. For photonic-device models, we find that this training becomes especially challenging as design regions grow larger than the optical wavelength. We present an active-learning algorithm that reduces the number of simulations required by more than an order of magnitude for an NN surrogate model of optical-surface components compared to uniform random samples. Results show that the surrogate evaluation is over two orders of magnitude faster than a direct solve, and we demonstrate how this can be exploited to accelerate large-scale engineering optimization.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00431-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/357/1015 ; Algorithms ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Learning algorithms ; Machine learning ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Metamaterials ; Metasurfaces ; Optimization ; Partial differential equations ; Theoretical ; Training</subject><ispartof>npj computational materials, 2020-10, Vol.6 (1), Article 164</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-53c8301a0c75a63ddc7ecaf8c71dbdc344473104225c8c52c7d9c48ec952811f3</citedby><cites>FETCH-LOGICAL-c363t-53c8301a0c75a63ddc7ecaf8c71dbdc344473104225c8c52c7d9c48ec952811f3</cites><orcidid>0000-0001-6267-8771 ; 0000-0002-7288-0516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-00431-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-00431-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Pestourie, Raphaël</creatorcontrib><creatorcontrib>Mroueh, Youssef</creatorcontrib><creatorcontrib>Nguyen, Thanh V.</creatorcontrib><creatorcontrib>Das, Payel</creatorcontrib><creatorcontrib>Johnson, Steven G.</creatorcontrib><title>Active learning of deep surrogates for PDEs: application to metasurface design</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Surrogate models for partial differential equations are widely used in the design of metamaterials to rapidly evaluate the behavior of composable components. However, the training cost of accurate surrogates by machine learning can rapidly increase with the number of variables. For photonic-device models, we find that this training becomes especially challenging as design regions grow larger than the optical wavelength. We present an active-learning algorithm that reduces the number of simulations required by more than an order of magnitude for an NN surrogate model of optical-surface components compared to uniform random samples. Results show that the surrogate evaluation is over two orders of magnitude faster than a direct solve, and we demonstrate how this can be exploited to accelerate large-scale engineering optimization.</description><subject>639/301/1034/1037</subject><subject>639/301/357/1015</subject><subject>Algorithms</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Theoretical</subject><subject>Training</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQQIMoWGr_gKeA59XJV7PrrdRahaIe9BzibHbZ0m7WJBX890ZX0JOnmcN7M_AIOWdwyUCUV1EyxWUBHAoAKVjBj8iEg9KFqOZw_Gc_JbMYtwDAKl5yCRPysMDUvTu6czb0Xd9S39DauYHGQwi-tclF2vhAn25W8ZraYdh1aFPne5o83btkM9dYdFmKXdufkZPG7qKb_cwpebldPS_vis3j-n652BQo5iIVSmApgFlArexc1DVqh7YpUbP6tUYhpdSCgeRcYYmKo64rlKXDSvGSsUZMycV4dwj-7eBiMlt_CH1-abjUOYfSSmeKjxQGH2NwjRlCt7fhwzAwX-nMmM7kdOY7neFZEqMUM9y3Lvye_sf6BIW-cFY</recordid><startdate>20201029</startdate><enddate>20201029</enddate><creator>Pestourie, Raphaël</creator><creator>Mroueh, Youssef</creator><creator>Nguyen, Thanh V.</creator><creator>Das, Payel</creator><creator>Johnson, Steven G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6267-8771</orcidid><orcidid>https://orcid.org/0000-0002-7288-0516</orcidid></search><sort><creationdate>20201029</creationdate><title>Active learning of deep surrogates for PDEs: application to metasurface design</title><author>Pestourie, Raphaël ; Mroueh, Youssef ; Nguyen, Thanh V. ; Das, Payel ; Johnson, Steven G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-53c8301a0c75a63ddc7ecaf8c71dbdc344473104225c8c52c7d9c48ec952811f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1037</topic><topic>639/301/357/1015</topic><topic>Algorithms</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Theoretical</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pestourie, Raphaël</creatorcontrib><creatorcontrib>Mroueh, Youssef</creatorcontrib><creatorcontrib>Nguyen, Thanh V.</creatorcontrib><creatorcontrib>Das, Payel</creatorcontrib><creatorcontrib>Johnson, Steven G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pestourie, Raphaël</au><au>Mroueh, Youssef</au><au>Nguyen, Thanh V.</au><au>Das, Payel</au><au>Johnson, Steven G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active learning of deep surrogates for PDEs: application to metasurface design</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-10-29</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>164</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Surrogate models for partial differential equations are widely used in the design of metamaterials to rapidly evaluate the behavior of composable components. However, the training cost of accurate surrogates by machine learning can rapidly increase with the number of variables. For photonic-device models, we find that this training becomes especially challenging as design regions grow larger than the optical wavelength. We present an active-learning algorithm that reduces the number of simulations required by more than an order of magnitude for an NN surrogate model of optical-surface components compared to uniform random samples. Results show that the surrogate evaluation is over two orders of magnitude faster than a direct solve, and we demonstrate how this can be exploited to accelerate large-scale engineering optimization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00431-2</doi><orcidid>https://orcid.org/0000-0001-6267-8771</orcidid><orcidid>https://orcid.org/0000-0002-7288-0516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2020-10, Vol.6 (1), Article 164 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_2471525757 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals |
subjects | 639/301/1034/1037 639/301/357/1015 Algorithms Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Learning algorithms Machine learning Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Metamaterials Metasurfaces Optimization Partial differential equations Theoretical Training |
title | Active learning of deep surrogates for PDEs: application to metasurface design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20learning%20of%20deep%20surrogates%20for%20PDEs:%20application%20to%20metasurface%20design&rft.jtitle=npj%20computational%20materials&rft.au=Pestourie,%20Rapha%C3%ABl&rft.date=2020-10-29&rft.volume=6&rft.issue=1&rft.artnum=164&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00431-2&rft_dat=%3Cproquest_cross%3E2471525757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471525757&rft_id=info:pmid/&rfr_iscdi=true |