Empirical evidence for resilience of tropical forest photosynthesis in a warmer world
Tropical forests may be vulnerable to climate change 1 – 3 if photosynthetic carbon uptake currently operates near a high temperature limit 4 – 6 . Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: sto...
Gespeichert in:
Veröffentlicht in: | Nature plants 2020-10, Vol.6 (10), p.1225-1230 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1230 |
---|---|
container_issue | 10 |
container_start_page | 1225 |
container_title | Nature plants |
container_volume | 6 |
creator | Smith, Marielle N. Taylor, Tyeen C. van Haren, Joost Rosolem, Rafael Restrepo-Coupe, Natalia Adams, John Wu, Jin de Oliveira, Raimundo C. da Silva, Rodrigo de Araujo, Alessandro C. de Camargo, Plinio B. Huxman, Travis E. Saleska, Scott R. |
description | Tropical forests may be vulnerable to climate change
1
–
3
if photosynthetic carbon uptake currently operates near a high temperature limit
4
–
6
. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)
7
, and biochemical restrictions (H2), a direct temperature response
8
,
9
. Their relative control predicts different outcomes—H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO
2
], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref.
10
). If elevated [CO
2
] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized
9
,
11
, tropical forest photosynthesis may have a margin of resilience to future warming.
Photosynthesis in tropical forests shows an apparent sensitivity to temperature. This Letter teases apart the effects of temperature and correlated atmospheric water demand on ecosystem productivity. |
doi_str_mv | 10.1038/s41477-020-00780-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471472040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471472040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d0fff236cbaee471f2c519a6473e83353647e7d9e9923653430ca8bd4fad3063</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EolXpC3BAljgHxkvi5IgqNqkSl3K23GRMU6VxsFOqvj2mKcuJk5f55p_RR8glgxsGIr8NkkmlEuCQAKgcEn5CxhzSNH6p_PTPfUSmIawBgKk0FRmck5EQkLKM5WPyer_pal-XpqH4UVfYlkit89RjqJv68HSW9t51ByaWMPS0W7nehX3bryIWaN1SQ3fGb9DTnfNNdUHOrGkCTo_nhCwe7hezp2T-8vg8u5snpWRFn1RgreUiK5cGUSpmeZmywmRSCcyFiMtKhaoqsCgilQopoDT5spLWVAIyMSHXQ2zn3fs2LqbXbuvbOFHzGCcVBwmR4gNVeheCR6s7X2-M32sG-sulHlzq6FIfXGoem66O0dvlBquflm9zERADEGKpfUP_O_uf2E9gzn8L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471472040</pqid></control><display><type>article</type><title>Empirical evidence for resilience of tropical forest photosynthesis in a warmer world</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Smith, Marielle N. ; Taylor, Tyeen C. ; van Haren, Joost ; Rosolem, Rafael ; Restrepo-Coupe, Natalia ; Adams, John ; Wu, Jin ; de Oliveira, Raimundo C. ; da Silva, Rodrigo ; de Araujo, Alessandro C. ; de Camargo, Plinio B. ; Huxman, Travis E. ; Saleska, Scott R.</creator><creatorcontrib>Smith, Marielle N. ; Taylor, Tyeen C. ; van Haren, Joost ; Rosolem, Rafael ; Restrepo-Coupe, Natalia ; Adams, John ; Wu, Jin ; de Oliveira, Raimundo C. ; da Silva, Rodrigo ; de Araujo, Alessandro C. ; de Camargo, Plinio B. ; Huxman, Travis E. ; Saleska, Scott R.</creatorcontrib><description>Tropical forests may be vulnerable to climate change
1
–
3
if photosynthetic carbon uptake currently operates near a high temperature limit
4
–
6
. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)
7
, and biochemical restrictions (H2), a direct temperature response
8
,
9
. Their relative control predicts different outcomes—H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO
2
], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref.
10
). If elevated [CO
2
] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized
9
,
11
, tropical forest photosynthesis may have a margin of resilience to future warming.
Photosynthesis in tropical forests shows an apparent sensitivity to temperature. This Letter teases apart the effects of temperature and correlated atmospheric water demand on ecosystem productivity.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-020-00780-2</identifier><identifier>PMID: 33051618</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2445 ; 704/158/2450 ; 704/172 ; Atmospheric Pressure ; Atmospheric water ; Biomedical and Life Sciences ; Carbon dioxide ; Climate Change ; Ecosystem ; Forests ; High temperature ; Humidity ; Letter ; Life Sciences ; Photosynthesis ; Plant Sciences ; Rainforest ; Temperature ; Trees - physiology ; Tropical Climate ; Tropical forests ; Vapor pressure ; Water demand ; Water use</subject><ispartof>Nature plants, 2020-10, Vol.6 (10), p.1225-1230</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d0fff236cbaee471f2c519a6473e83353647e7d9e9923653430ca8bd4fad3063</citedby><cites>FETCH-LOGICAL-c419t-d0fff236cbaee471f2c519a6473e83353647e7d9e9923653430ca8bd4fad3063</cites><orcidid>0000-0001-8991-3970 ; 0000-0003-2323-331X ; 0000-0002-0926-098X ; 0000-0001-7879-5972 ; 0000-0002-4914-692X ; 0000-0003-3921-1772 ; 0000-0002-7361-5087 ; 0000-0001-9222-5861 ; 0000-0002-2735-1746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-020-00780-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-020-00780-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33051618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Marielle N.</creatorcontrib><creatorcontrib>Taylor, Tyeen C.</creatorcontrib><creatorcontrib>van Haren, Joost</creatorcontrib><creatorcontrib>Rosolem, Rafael</creatorcontrib><creatorcontrib>Restrepo-Coupe, Natalia</creatorcontrib><creatorcontrib>Adams, John</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>de Oliveira, Raimundo C.</creatorcontrib><creatorcontrib>da Silva, Rodrigo</creatorcontrib><creatorcontrib>de Araujo, Alessandro C.</creatorcontrib><creatorcontrib>de Camargo, Plinio B.</creatorcontrib><creatorcontrib>Huxman, Travis E.</creatorcontrib><creatorcontrib>Saleska, Scott R.</creatorcontrib><title>Empirical evidence for resilience of tropical forest photosynthesis in a warmer world</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>Tropical forests may be vulnerable to climate change
1
–
3
if photosynthetic carbon uptake currently operates near a high temperature limit
4
–
6
. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)
7
, and biochemical restrictions (H2), a direct temperature response
8
,
9
. Their relative control predicts different outcomes—H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO
2
], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref.
10
). If elevated [CO
2
] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized
9
,
11
, tropical forest photosynthesis may have a margin of resilience to future warming.
Photosynthesis in tropical forests shows an apparent sensitivity to temperature. This Letter teases apart the effects of temperature and correlated atmospheric water demand on ecosystem productivity.</description><subject>631/158/2445</subject><subject>704/158/2450</subject><subject>704/172</subject><subject>Atmospheric Pressure</subject><subject>Atmospheric water</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Climate Change</subject><subject>Ecosystem</subject><subject>Forests</subject><subject>High temperature</subject><subject>Humidity</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Photosynthesis</subject><subject>Plant Sciences</subject><subject>Rainforest</subject><subject>Temperature</subject><subject>Trees - physiology</subject><subject>Tropical Climate</subject><subject>Tropical forests</subject><subject>Vapor pressure</subject><subject>Water demand</subject><subject>Water use</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMlOwzAQhi0EolXpC3BAljgHxkvi5IgqNqkSl3K23GRMU6VxsFOqvj2mKcuJk5f55p_RR8glgxsGIr8NkkmlEuCQAKgcEn5CxhzSNH6p_PTPfUSmIawBgKk0FRmck5EQkLKM5WPyer_pal-XpqH4UVfYlkit89RjqJv68HSW9t51ByaWMPS0W7nehX3bryIWaN1SQ3fGb9DTnfNNdUHOrGkCTo_nhCwe7hezp2T-8vg8u5snpWRFn1RgreUiK5cGUSpmeZmywmRSCcyFiMtKhaoqsCgilQopoDT5spLWVAIyMSHXQ2zn3fs2LqbXbuvbOFHzGCcVBwmR4gNVeheCR6s7X2-M32sG-sulHlzq6FIfXGoem66O0dvlBquflm9zERADEGKpfUP_O_uf2E9gzn8L</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Smith, Marielle N.</creator><creator>Taylor, Tyeen C.</creator><creator>van Haren, Joost</creator><creator>Rosolem, Rafael</creator><creator>Restrepo-Coupe, Natalia</creator><creator>Adams, John</creator><creator>Wu, Jin</creator><creator>de Oliveira, Raimundo C.</creator><creator>da Silva, Rodrigo</creator><creator>de Araujo, Alessandro C.</creator><creator>de Camargo, Plinio B.</creator><creator>Huxman, Travis E.</creator><creator>Saleska, Scott R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8991-3970</orcidid><orcidid>https://orcid.org/0000-0003-2323-331X</orcidid><orcidid>https://orcid.org/0000-0002-0926-098X</orcidid><orcidid>https://orcid.org/0000-0001-7879-5972</orcidid><orcidid>https://orcid.org/0000-0002-4914-692X</orcidid><orcidid>https://orcid.org/0000-0003-3921-1772</orcidid><orcidid>https://orcid.org/0000-0002-7361-5087</orcidid><orcidid>https://orcid.org/0000-0001-9222-5861</orcidid><orcidid>https://orcid.org/0000-0002-2735-1746</orcidid></search><sort><creationdate>20201001</creationdate><title>Empirical evidence for resilience of tropical forest photosynthesis in a warmer world</title><author>Smith, Marielle N. ; Taylor, Tyeen C. ; van Haren, Joost ; Rosolem, Rafael ; Restrepo-Coupe, Natalia ; Adams, John ; Wu, Jin ; de Oliveira, Raimundo C. ; da Silva, Rodrigo ; de Araujo, Alessandro C. ; de Camargo, Plinio B. ; Huxman, Travis E. ; Saleska, Scott R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d0fff236cbaee471f2c519a6473e83353647e7d9e9923653430ca8bd4fad3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/158/2445</topic><topic>704/158/2450</topic><topic>704/172</topic><topic>Atmospheric Pressure</topic><topic>Atmospheric water</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Climate Change</topic><topic>Ecosystem</topic><topic>Forests</topic><topic>High temperature</topic><topic>Humidity</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Photosynthesis</topic><topic>Plant Sciences</topic><topic>Rainforest</topic><topic>Temperature</topic><topic>Trees - physiology</topic><topic>Tropical Climate</topic><topic>Tropical forests</topic><topic>Vapor pressure</topic><topic>Water demand</topic><topic>Water use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Marielle N.</creatorcontrib><creatorcontrib>Taylor, Tyeen C.</creatorcontrib><creatorcontrib>van Haren, Joost</creatorcontrib><creatorcontrib>Rosolem, Rafael</creatorcontrib><creatorcontrib>Restrepo-Coupe, Natalia</creatorcontrib><creatorcontrib>Adams, John</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>de Oliveira, Raimundo C.</creatorcontrib><creatorcontrib>da Silva, Rodrigo</creatorcontrib><creatorcontrib>de Araujo, Alessandro C.</creatorcontrib><creatorcontrib>de Camargo, Plinio B.</creatorcontrib><creatorcontrib>Huxman, Travis E.</creatorcontrib><creatorcontrib>Saleska, Scott R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Marielle N.</au><au>Taylor, Tyeen C.</au><au>van Haren, Joost</au><au>Rosolem, Rafael</au><au>Restrepo-Coupe, Natalia</au><au>Adams, John</au><au>Wu, Jin</au><au>de Oliveira, Raimundo C.</au><au>da Silva, Rodrigo</au><au>de Araujo, Alessandro C.</au><au>de Camargo, Plinio B.</au><au>Huxman, Travis E.</au><au>Saleska, Scott R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical evidence for resilience of tropical forest photosynthesis in a warmer world</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>6</volume><issue>10</issue><spage>1225</spage><epage>1230</epage><pages>1225-1230</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Tropical forests may be vulnerable to climate change
1
–
3
if photosynthetic carbon uptake currently operates near a high temperature limit
4
–
6
. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)
7
, and biochemical restrictions (H2), a direct temperature response
8
,
9
. Their relative control predicts different outcomes—H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO
2
], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref.
10
). If elevated [CO
2
] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized
9
,
11
, tropical forest photosynthesis may have a margin of resilience to future warming.
Photosynthesis in tropical forests shows an apparent sensitivity to temperature. This Letter teases apart the effects of temperature and correlated atmospheric water demand on ecosystem productivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33051618</pmid><doi>10.1038/s41477-020-00780-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8991-3970</orcidid><orcidid>https://orcid.org/0000-0003-2323-331X</orcidid><orcidid>https://orcid.org/0000-0002-0926-098X</orcidid><orcidid>https://orcid.org/0000-0001-7879-5972</orcidid><orcidid>https://orcid.org/0000-0002-4914-692X</orcidid><orcidid>https://orcid.org/0000-0003-3921-1772</orcidid><orcidid>https://orcid.org/0000-0002-7361-5087</orcidid><orcidid>https://orcid.org/0000-0001-9222-5861</orcidid><orcidid>https://orcid.org/0000-0002-2735-1746</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2020-10, Vol.6 (10), p.1225-1230 |
issn | 2055-0278 2055-0278 |
language | eng |
recordid | cdi_proquest_journals_2471472040 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/158/2445 704/158/2450 704/172 Atmospheric Pressure Atmospheric water Biomedical and Life Sciences Carbon dioxide Climate Change Ecosystem Forests High temperature Humidity Letter Life Sciences Photosynthesis Plant Sciences Rainforest Temperature Trees - physiology Tropical Climate Tropical forests Vapor pressure Water demand Water use |
title | Empirical evidence for resilience of tropical forest photosynthesis in a warmer world |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20evidence%20for%20resilience%20of%20tropical%20forest%20photosynthesis%20in%20a%20warmer%20world&rft.jtitle=Nature%20plants&rft.au=Smith,%20Marielle%20N.&rft.date=2020-10-01&rft.volume=6&rft.issue=10&rft.spage=1225&rft.epage=1230&rft.pages=1225-1230&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-020-00780-2&rft_dat=%3Cproquest_cross%3E2471472040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471472040&rft_id=info:pmid/33051618&rfr_iscdi=true |