Moments of the Forward Recurrence Time in a Renewal Process
The forward recurrence time (also known as residual or excess lifetime) is one of the key quantities in renewal theory. The study of the variability of the forward recurrence time (as measured by the variance or the standard deviation) is important especially when we want to predict when the next ev...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2020-12, Vol.22 (4), p.1591-1600 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1600 |
---|---|
container_issue | 4 |
container_start_page | 1591 |
container_title | Methodology and computing in applied probability |
container_volume | 22 |
creator | Losidis, Sotirios Politis, Konstadinos |
description | The forward recurrence time (also known as residual or excess lifetime) is one of the key quantities in renewal theory. The study of the variability of the forward recurrence time (as measured by the variance or the standard deviation) is important especially when we want to predict when the next event will occur. In this paper we study the moments of the forward recurrence time in a renewal process. In particular, we discuss the monotonicity of the variance for these recurrence times and study the covariance between the forward recurrence time at
t
and the number of renewals over [0,
t
]. The forward recurrence time practically applies in a number of cases. For example, in preventive replacement within any production process the forward recurrence time is the remaining time of the component. In medicine, for a chronic disease observed from one point onwards, the forward recurrence time is defined as the time in disease state until healing. |
doi_str_mv | 10.1007/s11009-018-9681-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471453756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117032826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-e1d79d7256aac6fd193308acb65ae3b2246a3b00e1e3048beaf82d41eec716443</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAczSTj00WT1JsFSqK1HPIZme1pd3UZEvx37tlBU96mmF43nfgIeQS-DVwbm4y9KNkHCwrCwusPCIj0EYyY0Ae97u0hmmr4JSc5bziXICWakRun-IG2y7T2NDuA-k0pr1PNX3FsEsJ24B0sdwgXbbU98cW935NX1IMmPM5OWn8OuPFzxyTt-n9YvLA5s-zx8ndnAWpVMcQalPWRujC-1A0NZRScutDVWiPshJCFV5WnCOg5MpW6BsragWIwUChlByTq6F3m-LnDnPnVnGX2v6lE8qA0tLo4l8KwHAprDhQMFAhxZwTNm6blhufvhxwdzDpBpOuN-kOJl3ZZ8SQyT3bvmP6bf479A0oS3PC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117032826</pqid></control><display><type>article</type><title>Moments of the Forward Recurrence Time in a Renewal Process</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Losidis, Sotirios ; Politis, Konstadinos</creator><creatorcontrib>Losidis, Sotirios ; Politis, Konstadinos</creatorcontrib><description>The forward recurrence time (also known as residual or excess lifetime) is one of the key quantities in renewal theory. The study of the variability of the forward recurrence time (as measured by the variance or the standard deviation) is important especially when we want to predict when the next event will occur. In this paper we study the moments of the forward recurrence time in a renewal process. In particular, we discuss the monotonicity of the variance for these recurrence times and study the covariance between the forward recurrence time at
t
and the number of renewals over [0,
t
]. The forward recurrence time practically applies in a number of cases. For example, in preventive replacement within any production process the forward recurrence time is the remaining time of the component. In medicine, for a chronic disease observed from one point onwards, the forward recurrence time is defined as the time in disease state until healing.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-018-9681-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Covariance ; Economics ; Electrical Engineering ; Life Sciences ; Mathematics and Statistics ; Predictions ; Probability ; Statistics ; Time measurement ; Variance</subject><ispartof>Methodology and computing in applied probability, 2020-12, Vol.22 (4), p.1591-1600</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Methodology and Computing in Applied Probability is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-e1d79d7256aac6fd193308acb65ae3b2246a3b00e1e3048beaf82d41eec716443</citedby><cites>FETCH-LOGICAL-c344t-e1d79d7256aac6fd193308acb65ae3b2246a3b00e1e3048beaf82d41eec716443</cites><orcidid>0000-0002-1067-2594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-018-9681-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-018-9681-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Losidis, Sotirios</creatorcontrib><creatorcontrib>Politis, Konstadinos</creatorcontrib><title>Moments of the Forward Recurrence Time in a Renewal Process</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>The forward recurrence time (also known as residual or excess lifetime) is one of the key quantities in renewal theory. The study of the variability of the forward recurrence time (as measured by the variance or the standard deviation) is important especially when we want to predict when the next event will occur. In this paper we study the moments of the forward recurrence time in a renewal process. In particular, we discuss the monotonicity of the variance for these recurrence times and study the covariance between the forward recurrence time at
t
and the number of renewals over [0,
t
]. The forward recurrence time practically applies in a number of cases. For example, in preventive replacement within any production process the forward recurrence time is the remaining time of the component. In medicine, for a chronic disease observed from one point onwards, the forward recurrence time is defined as the time in disease state until healing.</description><subject>Business and Management</subject><subject>Covariance</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Life Sciences</subject><subject>Mathematics and Statistics</subject><subject>Predictions</subject><subject>Probability</subject><subject>Statistics</subject><subject>Time measurement</subject><subject>Variance</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wFvAczSTj00WT1JsFSqK1HPIZme1pd3UZEvx37tlBU96mmF43nfgIeQS-DVwbm4y9KNkHCwrCwusPCIj0EYyY0Ae97u0hmmr4JSc5bziXICWakRun-IG2y7T2NDuA-k0pr1PNX3FsEsJ24B0sdwgXbbU98cW935NX1IMmPM5OWn8OuPFzxyTt-n9YvLA5s-zx8ndnAWpVMcQalPWRujC-1A0NZRScutDVWiPshJCFV5WnCOg5MpW6BsragWIwUChlByTq6F3m-LnDnPnVnGX2v6lE8qA0tLo4l8KwHAprDhQMFAhxZwTNm6blhufvhxwdzDpBpOuN-kOJl3ZZ8SQyT3bvmP6bf479A0oS3PC</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Losidis, Sotirios</creator><creator>Politis, Konstadinos</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1067-2594</orcidid></search><sort><creationdate>20201201</creationdate><title>Moments of the Forward Recurrence Time in a Renewal Process</title><author>Losidis, Sotirios ; Politis, Konstadinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-e1d79d7256aac6fd193308acb65ae3b2246a3b00e1e3048beaf82d41eec716443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Business and Management</topic><topic>Covariance</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Life Sciences</topic><topic>Mathematics and Statistics</topic><topic>Predictions</topic><topic>Probability</topic><topic>Statistics</topic><topic>Time measurement</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Losidis, Sotirios</creatorcontrib><creatorcontrib>Politis, Konstadinos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Losidis, Sotirios</au><au>Politis, Konstadinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moments of the Forward Recurrence Time in a Renewal Process</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>1591</spage><epage>1600</epage><pages>1591-1600</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>The forward recurrence time (also known as residual or excess lifetime) is one of the key quantities in renewal theory. The study of the variability of the forward recurrence time (as measured by the variance or the standard deviation) is important especially when we want to predict when the next event will occur. In this paper we study the moments of the forward recurrence time in a renewal process. In particular, we discuss the monotonicity of the variance for these recurrence times and study the covariance between the forward recurrence time at
t
and the number of renewals over [0,
t
]. The forward recurrence time practically applies in a number of cases. For example, in preventive replacement within any production process the forward recurrence time is the remaining time of the component. In medicine, for a chronic disease observed from one point onwards, the forward recurrence time is defined as the time in disease state until healing.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-018-9681-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1067-2594</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-5841 |
ispartof | Methodology and computing in applied probability, 2020-12, Vol.22 (4), p.1591-1600 |
issn | 1387-5841 1573-7713 |
language | eng |
recordid | cdi_proquest_journals_2471453756 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Business and Management Covariance Economics Electrical Engineering Life Sciences Mathematics and Statistics Predictions Probability Statistics Time measurement Variance |
title | Moments of the Forward Recurrence Time in a Renewal Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moments%20of%20the%20Forward%20Recurrence%20Time%20in%20a%20Renewal%20Process&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Losidis,%20Sotirios&rft.date=2020-12-01&rft.volume=22&rft.issue=4&rft.spage=1591&rft.epage=1600&rft.pages=1591-1600&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-018-9681-9&rft_dat=%3Cproquest_cross%3E2117032826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117032826&rft_id=info:pmid/&rfr_iscdi=true |