Global stability analysis of axisymmetric liquid–liquid flow focusing
We analyse both numerically and experimentally the stability of the steady jetting tip streaming produced by focusing a liquid stream with another liquid current when they coflow through the orifice of an axisymmetric nozzle. We calculate the global eigenmodes characterizing the response of this con...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-02, Vol.909, Article A10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 909 |
creator | Cabezas, M. G. Rebollo-Muñoz, N. Rubio, M. Herrada, M. A. Montanero, J. M. |
description | We analyse both numerically and experimentally the stability of the steady jetting tip streaming produced by focusing a liquid stream with another liquid current when they coflow through the orifice of an axisymmetric nozzle. We calculate the global eigenmodes characterizing the response of this configuration to small-amplitude perturbations. In this way, the critical conditions leading to the instability of the steady jetting tip streaming are determined. The unstable perturbations are classified according to their oscillatory character and to the region where they originate (convective and absolute instability). We derive and explain in terms of the velocity field a simple scaling law to predict the diameter of the emitted jet. The numerical stability limits are compared with experimental results, finding reasonable agreement. The experiments confirm the existence of the two instability mechanisms predicted by the global stability analysis. |
doi_str_mv | 10.1017/jfm.2020.953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471440898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_953</cupid><sourcerecordid>2471440898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d35896dba2a5bec32533607c33233349fa3a2fa7c816e6f73270e8cccfe75f513</originalsourceid><addsrcrecordid>eNptkLFOwzAURS0EEqWw8QGRWEl49rPjZEQVFCQkFpgtx7ErV0nT2okgG__AH_IlpGolFqb7hvOurg4h1xQyClTerV2bMWCQlQJPyIzyvExlzsUpmQEwllLK4JxcxLgGoAilnJHlsukq3SSx15VvfD8meqObMfqYdC7Rnz6ObWv74E3S-N3g65-v78ORuKb7SFxnhug3q0ty5nQT7dUx5-T98eFt8ZS-vC6fF_cvqUEOfVqjKMq8rjTTorIGmUDMQRpEhoi8dBo1c1qaguY2dxKZBFsYY5yVwgmKc3Jz6N2GbjfY2Kt1N4RpclSMS8o5FGUxUbcHyoQuxmCd2gbf6jAqCmqvSk2q1F6VmlRNeHbEdVsFX6_sX-u_D79v82y0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471440898</pqid></control><display><type>article</type><title>Global stability analysis of axisymmetric liquid–liquid flow focusing</title><source>Cambridge Journals</source><creator>Cabezas, M. G. ; Rebollo-Muñoz, N. ; Rubio, M. ; Herrada, M. A. ; Montanero, J. M.</creator><creatorcontrib>Cabezas, M. G. ; Rebollo-Muñoz, N. ; Rubio, M. ; Herrada, M. A. ; Montanero, J. M.</creatorcontrib><description>We analyse both numerically and experimentally the stability of the steady jetting tip streaming produced by focusing a liquid stream with another liquid current when they coflow through the orifice of an axisymmetric nozzle. We calculate the global eigenmodes characterizing the response of this configuration to small-amplitude perturbations. In this way, the critical conditions leading to the instability of the steady jetting tip streaming are determined. The unstable perturbations are classified according to their oscillatory character and to the region where they originate (convective and absolute instability). We derive and explain in terms of the velocity field a simple scaling law to predict the diameter of the emitted jet. The numerical stability limits are compared with experimental results, finding reasonable agreement. The experiments confirm the existence of the two instability mechanisms predicted by the global stability analysis.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.953</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Axisymmetric flow ; Collaboration ; Computational fluid dynamics ; Flow control ; Flow stability ; Instability ; JFM Papers ; Liquid flow ; Nozzles ; Numerical stability ; Orifices ; Perturbations ; Scaling ; Scaling laws ; Stability ; Stability analysis ; Streaming ; Surfactants ; Velocity distribution</subject><ispartof>Journal of fluid mechanics, 2021-02, Vol.909, Article A10</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d35896dba2a5bec32533607c33233349fa3a2fa7c816e6f73270e8cccfe75f513</citedby><cites>FETCH-LOGICAL-c340t-d35896dba2a5bec32533607c33233349fa3a2fa7c816e6f73270e8cccfe75f513</cites><orcidid>0000-0002-9126-2254 ; 0000-0002-2380-9545 ; 0000-0003-0388-8001 ; 0000-0002-3906-5931 ; 0000-0002-4573-5647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020009532/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Cabezas, M. G.</creatorcontrib><creatorcontrib>Rebollo-Muñoz, N.</creatorcontrib><creatorcontrib>Rubio, M.</creatorcontrib><creatorcontrib>Herrada, M. A.</creatorcontrib><creatorcontrib>Montanero, J. M.</creatorcontrib><title>Global stability analysis of axisymmetric liquid–liquid flow focusing</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We analyse both numerically and experimentally the stability of the steady jetting tip streaming produced by focusing a liquid stream with another liquid current when they coflow through the orifice of an axisymmetric nozzle. We calculate the global eigenmodes characterizing the response of this configuration to small-amplitude perturbations. In this way, the critical conditions leading to the instability of the steady jetting tip streaming are determined. The unstable perturbations are classified according to their oscillatory character and to the region where they originate (convective and absolute instability). We derive and explain in terms of the velocity field a simple scaling law to predict the diameter of the emitted jet. The numerical stability limits are compared with experimental results, finding reasonable agreement. The experiments confirm the existence of the two instability mechanisms predicted by the global stability analysis.</description><subject>Axisymmetric flow</subject><subject>Collaboration</subject><subject>Computational fluid dynamics</subject><subject>Flow control</subject><subject>Flow stability</subject><subject>Instability</subject><subject>JFM Papers</subject><subject>Liquid flow</subject><subject>Nozzles</subject><subject>Numerical stability</subject><subject>Orifices</subject><subject>Perturbations</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Streaming</subject><subject>Surfactants</subject><subject>Velocity distribution</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkLFOwzAURS0EEqWw8QGRWEl49rPjZEQVFCQkFpgtx7ErV0nT2okgG__AH_IlpGolFqb7hvOurg4h1xQyClTerV2bMWCQlQJPyIzyvExlzsUpmQEwllLK4JxcxLgGoAilnJHlsukq3SSx15VvfD8meqObMfqYdC7Rnz6ObWv74E3S-N3g65-v78ORuKb7SFxnhug3q0ty5nQT7dUx5-T98eFt8ZS-vC6fF_cvqUEOfVqjKMq8rjTTorIGmUDMQRpEhoi8dBo1c1qaguY2dxKZBFsYY5yVwgmKc3Jz6N2GbjfY2Kt1N4RpclSMS8o5FGUxUbcHyoQuxmCd2gbf6jAqCmqvSk2q1F6VmlRNeHbEdVsFX6_sX-u_D79v82y0</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Cabezas, M. G.</creator><creator>Rebollo-Muñoz, N.</creator><creator>Rubio, M.</creator><creator>Herrada, M. A.</creator><creator>Montanero, J. M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9126-2254</orcidid><orcidid>https://orcid.org/0000-0002-2380-9545</orcidid><orcidid>https://orcid.org/0000-0003-0388-8001</orcidid><orcidid>https://orcid.org/0000-0002-3906-5931</orcidid><orcidid>https://orcid.org/0000-0002-4573-5647</orcidid></search><sort><creationdate>20210225</creationdate><title>Global stability analysis of axisymmetric liquid–liquid flow focusing</title><author>Cabezas, M. G. ; Rebollo-Muñoz, N. ; Rubio, M. ; Herrada, M. A. ; Montanero, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d35896dba2a5bec32533607c33233349fa3a2fa7c816e6f73270e8cccfe75f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axisymmetric flow</topic><topic>Collaboration</topic><topic>Computational fluid dynamics</topic><topic>Flow control</topic><topic>Flow stability</topic><topic>Instability</topic><topic>JFM Papers</topic><topic>Liquid flow</topic><topic>Nozzles</topic><topic>Numerical stability</topic><topic>Orifices</topic><topic>Perturbations</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Streaming</topic><topic>Surfactants</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabezas, M. G.</creatorcontrib><creatorcontrib>Rebollo-Muñoz, N.</creatorcontrib><creatorcontrib>Rubio, M.</creatorcontrib><creatorcontrib>Herrada, M. A.</creatorcontrib><creatorcontrib>Montanero, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabezas, M. G.</au><au>Rebollo-Muñoz, N.</au><au>Rubio, M.</au><au>Herrada, M. A.</au><au>Montanero, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global stability analysis of axisymmetric liquid–liquid flow focusing</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-02-25</date><risdate>2021</risdate><volume>909</volume><artnum>A10</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We analyse both numerically and experimentally the stability of the steady jetting tip streaming produced by focusing a liquid stream with another liquid current when they coflow through the orifice of an axisymmetric nozzle. We calculate the global eigenmodes characterizing the response of this configuration to small-amplitude perturbations. In this way, the critical conditions leading to the instability of the steady jetting tip streaming are determined. The unstable perturbations are classified according to their oscillatory character and to the region where they originate (convective and absolute instability). We derive and explain in terms of the velocity field a simple scaling law to predict the diameter of the emitted jet. The numerical stability limits are compared with experimental results, finding reasonable agreement. The experiments confirm the existence of the two instability mechanisms predicted by the global stability analysis.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.953</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9126-2254</orcidid><orcidid>https://orcid.org/0000-0002-2380-9545</orcidid><orcidid>https://orcid.org/0000-0003-0388-8001</orcidid><orcidid>https://orcid.org/0000-0002-3906-5931</orcidid><orcidid>https://orcid.org/0000-0002-4573-5647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-02, Vol.909, Article A10 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2471440898 |
source | Cambridge Journals |
subjects | Axisymmetric flow Collaboration Computational fluid dynamics Flow control Flow stability Instability JFM Papers Liquid flow Nozzles Numerical stability Orifices Perturbations Scaling Scaling laws Stability Stability analysis Streaming Surfactants Velocity distribution |
title | Global stability analysis of axisymmetric liquid–liquid flow focusing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20stability%20analysis%20of%20axisymmetric%20liquid%E2%80%93liquid%20flow%20focusing&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Cabezas,%20M.%20G.&rft.date=2021-02-25&rft.volume=909&rft.artnum=A10&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.953&rft_dat=%3Cproquest_cross%3E2471440898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471440898&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_953&rfr_iscdi=true |