Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot
This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the clim...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2021-01, Vol.36 (1), p.14-29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 36 |
creator | Jang, Keunyoung An, Yun‐Kyu Kim, Byunghyun Cho, Soojin |
description | This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%. |
doi_str_mv | 10.1111/mice.12550 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471172297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471172297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmNw4QkicUPqSNq06Y7TNGDSEBe4cImc1N0y2rUkLWg3HoFn5EnIKGd8seX_sy3_hFxyNuEhbmprcMLjNGVHZMRFJqM8y-RxqNk0iaZZLk_JmfdbFkKIZEReZn3X1NBhQY0D80rxHaoeOtvsaFNSoBu73nx_fjnrkWpnizXS1qKjvbe7ddBdSEHv9i1SU9laH9qu0U13Tk5KqDxe_OUxeb5dPM3vo9Xj3XI-W0VG8JRF2uSFQQ05CFYWuZY8MYahRp3oIi-YQYExAIRHNKSgSw1MpqzME44ihTIZk6thb-uatx59p7ZN73bhpIqF5FzG8VQG6nqgjGu8d1iq1tka3F5xpg7eqYN36te7APMB_rAV7v8h1cNyvhhmfgCmNnVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471172297</pqid></control><display><type>article</type><title>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</title><source>Wiley Online Library All Journals</source><creator>Jang, Keunyoung ; An, Yun‐Kyu ; Kim, Byunghyun ; Cho, Soojin</creator><creatorcontrib>Jang, Keunyoung ; An, Yun‐Kyu ; Kim, Byunghyun ; Cho, Soojin</creatorcontrib><description>This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12550</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Automation ; Bridge piers ; Climbing ; Cracks ; Deep learning ; Digital mapping ; Euclidean geometry ; Field tests ; Image quality ; Image segmentation ; Machine learning ; Robot control ; Robots ; Stitching ; Vision</subject><ispartof>Computer-aided civil and infrastructure engineering, 2021-01, Vol.36 (1), p.14-29</ispartof><rights>2020</rights><rights>2021 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</citedby><cites>FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12550$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12550$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Jang, Keunyoung</creatorcontrib><creatorcontrib>An, Yun‐Kyu</creatorcontrib><creatorcontrib>Kim, Byunghyun</creatorcontrib><creatorcontrib>Cho, Soojin</creatorcontrib><title>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</title><title>Computer-aided civil and infrastructure engineering</title><description>This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Bridge piers</subject><subject>Climbing</subject><subject>Cracks</subject><subject>Deep learning</subject><subject>Digital mapping</subject><subject>Euclidean geometry</subject><subject>Field tests</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Robot control</subject><subject>Robots</subject><subject>Stitching</subject><subject>Vision</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmNw4QkicUPqSNq06Y7TNGDSEBe4cImc1N0y2rUkLWg3HoFn5EnIKGd8seX_sy3_hFxyNuEhbmprcMLjNGVHZMRFJqM8y-RxqNk0iaZZLk_JmfdbFkKIZEReZn3X1NBhQY0D80rxHaoeOtvsaFNSoBu73nx_fjnrkWpnizXS1qKjvbe7ddBdSEHv9i1SU9laH9qu0U13Tk5KqDxe_OUxeb5dPM3vo9Xj3XI-W0VG8JRF2uSFQQ05CFYWuZY8MYahRp3oIi-YQYExAIRHNKSgSw1MpqzME44ihTIZk6thb-uatx59p7ZN73bhpIqF5FzG8VQG6nqgjGu8d1iq1tka3F5xpg7eqYN36te7APMB_rAV7v8h1cNyvhhmfgCmNnVM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Jang, Keunyoung</creator><creator>An, Yun‐Kyu</creator><creator>Kim, Byunghyun</creator><creator>Cho, Soojin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202101</creationdate><title>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</title><author>Jang, Keunyoung ; An, Yun‐Kyu ; Kim, Byunghyun ; Cho, Soojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Bridge piers</topic><topic>Climbing</topic><topic>Cracks</topic><topic>Deep learning</topic><topic>Digital mapping</topic><topic>Euclidean geometry</topic><topic>Field tests</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Robot control</topic><topic>Robots</topic><topic>Stitching</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Keunyoung</creatorcontrib><creatorcontrib>An, Yun‐Kyu</creatorcontrib><creatorcontrib>Kim, Byunghyun</creatorcontrib><creatorcontrib>Cho, Soojin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Keunyoung</au><au>An, Yun‐Kyu</au><au>Kim, Byunghyun</au><au>Cho, Soojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2021-01</date><risdate>2021</risdate><volume>36</volume><issue>1</issue><spage>14</spage><epage>29</epage><pages>14-29</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12550</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2021-01, Vol.36 (1), p.14-29 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2471172297 |
source | Wiley Online Library All Journals |
subjects | Algorithms Automation Bridge piers Climbing Cracks Deep learning Digital mapping Euclidean geometry Field tests Image quality Image segmentation Machine learning Robot control Robots Stitching Vision |
title | Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20crack%20evaluation%20of%20a%20high%E2%80%90rise%20bridge%20pier%20using%20a%20ring%E2%80%90type%20climbing%20robot&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Jang,%20Keunyoung&rft.date=2021-01&rft.volume=36&rft.issue=1&rft.spage=14&rft.epage=29&rft.pages=14-29&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12550&rft_dat=%3Cproquest_cross%3E2471172297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471172297&rft_id=info:pmid/&rfr_iscdi=true |