Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot

This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the clim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2021-01, Vol.36 (1), p.14-29
Hauptverfasser: Jang, Keunyoung, An, Yun‐Kyu, Kim, Byunghyun, Cho, Soojin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 14
container_title Computer-aided civil and infrastructure engineering
container_volume 36
creator Jang, Keunyoung
An, Yun‐Kyu
Kim, Byunghyun
Cho, Soojin
description This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.
doi_str_mv 10.1111/mice.12550
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471172297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471172297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmNw4QkicUPqSNq06Y7TNGDSEBe4cImc1N0y2rUkLWg3HoFn5EnIKGd8seX_sy3_hFxyNuEhbmprcMLjNGVHZMRFJqM8y-RxqNk0iaZZLk_JmfdbFkKIZEReZn3X1NBhQY0D80rxHaoeOtvsaFNSoBu73nx_fjnrkWpnizXS1qKjvbe7ddBdSEHv9i1SU9laH9qu0U13Tk5KqDxe_OUxeb5dPM3vo9Xj3XI-W0VG8JRF2uSFQQ05CFYWuZY8MYahRp3oIi-YQYExAIRHNKSgSw1MpqzME44ihTIZk6thb-uatx59p7ZN73bhpIqF5FzG8VQG6nqgjGu8d1iq1tka3F5xpg7eqYN36te7APMB_rAV7v8h1cNyvhhmfgCmNnVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471172297</pqid></control><display><type>article</type><title>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</title><source>Wiley Online Library All Journals</source><creator>Jang, Keunyoung ; An, Yun‐Kyu ; Kim, Byunghyun ; Cho, Soojin</creator><creatorcontrib>Jang, Keunyoung ; An, Yun‐Kyu ; Kim, Byunghyun ; Cho, Soojin</creatorcontrib><description>This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12550</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Automation ; Bridge piers ; Climbing ; Cracks ; Deep learning ; Digital mapping ; Euclidean geometry ; Field tests ; Image quality ; Image segmentation ; Machine learning ; Robot control ; Robots ; Stitching ; Vision</subject><ispartof>Computer-aided civil and infrastructure engineering, 2021-01, Vol.36 (1), p.14-29</ispartof><rights>2020</rights><rights>2021 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</citedby><cites>FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12550$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12550$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Jang, Keunyoung</creatorcontrib><creatorcontrib>An, Yun‐Kyu</creatorcontrib><creatorcontrib>Kim, Byunghyun</creatorcontrib><creatorcontrib>Cho, Soojin</creatorcontrib><title>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</title><title>Computer-aided civil and infrastructure engineering</title><description>This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Bridge piers</subject><subject>Climbing</subject><subject>Cracks</subject><subject>Deep learning</subject><subject>Digital mapping</subject><subject>Euclidean geometry</subject><subject>Field tests</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Robot control</subject><subject>Robots</subject><subject>Stitching</subject><subject>Vision</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmNw4QkicUPqSNq06Y7TNGDSEBe4cImc1N0y2rUkLWg3HoFn5EnIKGd8seX_sy3_hFxyNuEhbmprcMLjNGVHZMRFJqM8y-RxqNk0iaZZLk_JmfdbFkKIZEReZn3X1NBhQY0D80rxHaoeOtvsaFNSoBu73nx_fjnrkWpnizXS1qKjvbe7ddBdSEHv9i1SU9laH9qu0U13Tk5KqDxe_OUxeb5dPM3vo9Xj3XI-W0VG8JRF2uSFQQ05CFYWuZY8MYahRp3oIi-YQYExAIRHNKSgSw1MpqzME44ihTIZk6thb-uatx59p7ZN73bhpIqF5FzG8VQG6nqgjGu8d1iq1tka3F5xpg7eqYN36te7APMB_rAV7v8h1cNyvhhmfgCmNnVM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Jang, Keunyoung</creator><creator>An, Yun‐Kyu</creator><creator>Kim, Byunghyun</creator><creator>Cho, Soojin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202101</creationdate><title>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</title><author>Jang, Keunyoung ; An, Yun‐Kyu ; Kim, Byunghyun ; Cho, Soojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4150-bc8dceba8a40fd8b713cc0ebeb3bd8d0ce4e2aaa866ba5abfba0750f831e45af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Bridge piers</topic><topic>Climbing</topic><topic>Cracks</topic><topic>Deep learning</topic><topic>Digital mapping</topic><topic>Euclidean geometry</topic><topic>Field tests</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Robot control</topic><topic>Robots</topic><topic>Stitching</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Keunyoung</creatorcontrib><creatorcontrib>An, Yun‐Kyu</creatorcontrib><creatorcontrib>Kim, Byunghyun</creatorcontrib><creatorcontrib>Cho, Soojin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Keunyoung</au><au>An, Yun‐Kyu</au><au>Kim, Byunghyun</au><au>Cho, Soojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2021-01</date><risdate>2021</risdate><volume>36</volume><issue>1</issue><spage>14</spage><epage>29</epage><pages>14-29</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12550</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2021-01, Vol.36 (1), p.14-29
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2471172297
source Wiley Online Library All Journals
subjects Algorithms
Automation
Bridge piers
Climbing
Cracks
Deep learning
Digital mapping
Euclidean geometry
Field tests
Image quality
Image segmentation
Machine learning
Robot control
Robots
Stitching
Vision
title Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20crack%20evaluation%20of%20a%20high%E2%80%90rise%20bridge%20pier%20using%20a%20ring%E2%80%90type%20climbing%20robot&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Jang,%20Keunyoung&rft.date=2021-01&rft.volume=36&rft.issue=1&rft.spage=14&rft.epage=29&rft.pages=14-29&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12550&rft_dat=%3Cproquest_cross%3E2471172297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471172297&rft_id=info:pmid/&rfr_iscdi=true