Probabilistic sampling and estimation for large-scale assessment of poplar plantations in Northern Italy

In the recent decades, growing demand for wood products, combined with efforts to conserve natural forests, has supported a steady increase in the global extent of planted forests. In this paper, a two-phase sampling strategy for large-scale assessment of hybrid poplar plantations in Northern Italy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of forest research 2020-12, Vol.139 (6), p.981-988
Hauptverfasser: Corona, Piermaria, Chianucci, Francesco, Marcelli, Agnese, Gianelle, Damiano, Fattorini, Lorenzo, Grotti, Mirko, Puletti, Nicola, Mattioli, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue 6
container_start_page 981
container_title European journal of forest research
container_volume 139
creator Corona, Piermaria
Chianucci, Francesco
Marcelli, Agnese
Gianelle, Damiano
Fattorini, Lorenzo
Grotti, Mirko
Puletti, Nicola
Mattioli, Walter
description In the recent decades, growing demand for wood products, combined with efforts to conserve natural forests, has supported a steady increase in the global extent of planted forests. In this paper, a two-phase sampling strategy for large-scale assessment of hybrid poplar plantations in Northern Italy was implemented. The first phase was performed by means of tessellation stratified sampling on high-resolution remotely sensed imagery, covering the survey area by a grid of regular polygons of equal size and randomly and independently selecting one point per quadrat. All the plantations spotted by at least one sample point were selected. In the second phase, we randomly chosen a subset of plantations by stratified sampling that were visited on the ground to collect qualitative and quantitative attributes. The resulting estimates were reliable, and the survey demonstrated relatively easy to be implemented and replicated. These considerations support the use of the proposed sampling strategy to frequently update information on fast-growing forest plantations within agricultural farms, like hybrid poplar crops. Moreover, the results of the case study here presented highlight the relevance of hybrid poplar plantations in Italy, in the context of sustainable development strategies under a green economy perspective.
doi_str_mv 10.1007/s10342-020-01300-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471166432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471166432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b14ec93f09553bc09c8a28b46a03f0008c6153f4328b40a408470bb7bceb58023</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIhMAPUFmiNqwfd2eXKOIRKQIKqC3b-JKLLvZhX4r8PU6CoKPZXc3OzGoHoWsKtxSgucsUuGAEGBCgHICoEzShNWVE1E1z-jvX6hxd5LwGYFJJOUGrtxStsV3f5bFzOJvN0HdhiU34xL5AGzN2MeA2JtybtPQkO9N7bHL2OW98GHFs8RCHssSlhPHAz7gL-CWmceVTwPPR9LtLdNaaPvurnz5FH48P77Nnsnh9ms_uF8RxqkZiqfBO8RZUVXHrQDlpmLSiNlBAAOlqWvFW8D0IRoAUDVjbWOdtJYHxKbo5-g4pfm3LC3odtymUk5qJhtK6LtrCYkeWSzHn5Fs9pPJr2mkKep-oPiaqS6L6kKhWRcSPolzIYenTn_U_qm-ZLnnF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471166432</pqid></control><display><type>article</type><title>Probabilistic sampling and estimation for large-scale assessment of poplar plantations in Northern Italy</title><source>Springer Online Journals Complete</source><creator>Corona, Piermaria ; Chianucci, Francesco ; Marcelli, Agnese ; Gianelle, Damiano ; Fattorini, Lorenzo ; Grotti, Mirko ; Puletti, Nicola ; Mattioli, Walter</creator><creatorcontrib>Corona, Piermaria ; Chianucci, Francesco ; Marcelli, Agnese ; Gianelle, Damiano ; Fattorini, Lorenzo ; Grotti, Mirko ; Puletti, Nicola ; Mattioli, Walter</creatorcontrib><description>In the recent decades, growing demand for wood products, combined with efforts to conserve natural forests, has supported a steady increase in the global extent of planted forests. In this paper, a two-phase sampling strategy for large-scale assessment of hybrid poplar plantations in Northern Italy was implemented. The first phase was performed by means of tessellation stratified sampling on high-resolution remotely sensed imagery, covering the survey area by a grid of regular polygons of equal size and randomly and independently selecting one point per quadrat. All the plantations spotted by at least one sample point were selected. In the second phase, we randomly chosen a subset of plantations by stratified sampling that were visited on the ground to collect qualitative and quantitative attributes. The resulting estimates were reliable, and the survey demonstrated relatively easy to be implemented and replicated. These considerations support the use of the proposed sampling strategy to frequently update information on fast-growing forest plantations within agricultural farms, like hybrid poplar crops. Moreover, the results of the case study here presented highlight the relevance of hybrid poplar plantations in Italy, in the context of sustainable development strategies under a green economy perspective.</description><identifier>ISSN: 1612-4669</identifier><identifier>EISSN: 1612-4677</identifier><identifier>DOI: 10.1007/s10342-020-01300-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Development strategies ; Farming ; Farms ; Forest management ; Forestry ; Green economy ; Hardwoods ; Image resolution ; Life Sciences ; Original Paper ; Plant Ecology ; Plant Sciences ; Plantations ; Polls &amp; surveys ; Poplar ; Remote sensing ; Sampling ; Sustainable development ; Tessellation ; Wood products</subject><ispartof>European journal of forest research, 2020-12, Vol.139 (6), p.981-988</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b14ec93f09553bc09c8a28b46a03f0008c6153f4328b40a408470bb7bceb58023</citedby><cites>FETCH-LOGICAL-c319t-b14ec93f09553bc09c8a28b46a03f0008c6153f4328b40a408470bb7bceb58023</cites><orcidid>0000-0003-2107-1038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10342-020-01300-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10342-020-01300-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Corona, Piermaria</creatorcontrib><creatorcontrib>Chianucci, Francesco</creatorcontrib><creatorcontrib>Marcelli, Agnese</creatorcontrib><creatorcontrib>Gianelle, Damiano</creatorcontrib><creatorcontrib>Fattorini, Lorenzo</creatorcontrib><creatorcontrib>Grotti, Mirko</creatorcontrib><creatorcontrib>Puletti, Nicola</creatorcontrib><creatorcontrib>Mattioli, Walter</creatorcontrib><title>Probabilistic sampling and estimation for large-scale assessment of poplar plantations in Northern Italy</title><title>European journal of forest research</title><addtitle>Eur J Forest Res</addtitle><description>In the recent decades, growing demand for wood products, combined with efforts to conserve natural forests, has supported a steady increase in the global extent of planted forests. In this paper, a two-phase sampling strategy for large-scale assessment of hybrid poplar plantations in Northern Italy was implemented. The first phase was performed by means of tessellation stratified sampling on high-resolution remotely sensed imagery, covering the survey area by a grid of regular polygons of equal size and randomly and independently selecting one point per quadrat. All the plantations spotted by at least one sample point were selected. In the second phase, we randomly chosen a subset of plantations by stratified sampling that were visited on the ground to collect qualitative and quantitative attributes. The resulting estimates were reliable, and the survey demonstrated relatively easy to be implemented and replicated. These considerations support the use of the proposed sampling strategy to frequently update information on fast-growing forest plantations within agricultural farms, like hybrid poplar crops. Moreover, the results of the case study here presented highlight the relevance of hybrid poplar plantations in Italy, in the context of sustainable development strategies under a green economy perspective.</description><subject>Biomedical and Life Sciences</subject><subject>Development strategies</subject><subject>Farming</subject><subject>Farms</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Green economy</subject><subject>Hardwoods</subject><subject>Image resolution</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Plant Ecology</subject><subject>Plant Sciences</subject><subject>Plantations</subject><subject>Polls &amp; surveys</subject><subject>Poplar</subject><subject>Remote sensing</subject><subject>Sampling</subject><subject>Sustainable development</subject><subject>Tessellation</subject><subject>Wood products</subject><issn>1612-4669</issn><issn>1612-4677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ULtOAzEQtBBIhMAPUFmiNqwfd2eXKOIRKQIKqC3b-JKLLvZhX4r8PU6CoKPZXc3OzGoHoWsKtxSgucsUuGAEGBCgHICoEzShNWVE1E1z-jvX6hxd5LwGYFJJOUGrtxStsV3f5bFzOJvN0HdhiU34xL5AGzN2MeA2JtybtPQkO9N7bHL2OW98GHFs8RCHssSlhPHAz7gL-CWmceVTwPPR9LtLdNaaPvurnz5FH48P77Nnsnh9ms_uF8RxqkZiqfBO8RZUVXHrQDlpmLSiNlBAAOlqWvFW8D0IRoAUDVjbWOdtJYHxKbo5-g4pfm3LC3odtymUk5qJhtK6LtrCYkeWSzHn5Fs9pPJr2mkKep-oPiaqS6L6kKhWRcSPolzIYenTn_U_qm-ZLnnF</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Corona, Piermaria</creator><creator>Chianucci, Francesco</creator><creator>Marcelli, Agnese</creator><creator>Gianelle, Damiano</creator><creator>Fattorini, Lorenzo</creator><creator>Grotti, Mirko</creator><creator>Puletti, Nicola</creator><creator>Mattioli, Walter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2107-1038</orcidid></search><sort><creationdate>20201201</creationdate><title>Probabilistic sampling and estimation for large-scale assessment of poplar plantations in Northern Italy</title><author>Corona, Piermaria ; Chianucci, Francesco ; Marcelli, Agnese ; Gianelle, Damiano ; Fattorini, Lorenzo ; Grotti, Mirko ; Puletti, Nicola ; Mattioli, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b14ec93f09553bc09c8a28b46a03f0008c6153f4328b40a408470bb7bceb58023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Development strategies</topic><topic>Farming</topic><topic>Farms</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Green economy</topic><topic>Hardwoods</topic><topic>Image resolution</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Plant Ecology</topic><topic>Plant Sciences</topic><topic>Plantations</topic><topic>Polls &amp; surveys</topic><topic>Poplar</topic><topic>Remote sensing</topic><topic>Sampling</topic><topic>Sustainable development</topic><topic>Tessellation</topic><topic>Wood products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corona, Piermaria</creatorcontrib><creatorcontrib>Chianucci, Francesco</creatorcontrib><creatorcontrib>Marcelli, Agnese</creatorcontrib><creatorcontrib>Gianelle, Damiano</creatorcontrib><creatorcontrib>Fattorini, Lorenzo</creatorcontrib><creatorcontrib>Grotti, Mirko</creatorcontrib><creatorcontrib>Puletti, Nicola</creatorcontrib><creatorcontrib>Mattioli, Walter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>European journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corona, Piermaria</au><au>Chianucci, Francesco</au><au>Marcelli, Agnese</au><au>Gianelle, Damiano</au><au>Fattorini, Lorenzo</au><au>Grotti, Mirko</au><au>Puletti, Nicola</au><au>Mattioli, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic sampling and estimation for large-scale assessment of poplar plantations in Northern Italy</atitle><jtitle>European journal of forest research</jtitle><stitle>Eur J Forest Res</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>139</volume><issue>6</issue><spage>981</spage><epage>988</epage><pages>981-988</pages><issn>1612-4669</issn><eissn>1612-4677</eissn><abstract>In the recent decades, growing demand for wood products, combined with efforts to conserve natural forests, has supported a steady increase in the global extent of planted forests. In this paper, a two-phase sampling strategy for large-scale assessment of hybrid poplar plantations in Northern Italy was implemented. The first phase was performed by means of tessellation stratified sampling on high-resolution remotely sensed imagery, covering the survey area by a grid of regular polygons of equal size and randomly and independently selecting one point per quadrat. All the plantations spotted by at least one sample point were selected. In the second phase, we randomly chosen a subset of plantations by stratified sampling that were visited on the ground to collect qualitative and quantitative attributes. The resulting estimates were reliable, and the survey demonstrated relatively easy to be implemented and replicated. These considerations support the use of the proposed sampling strategy to frequently update information on fast-growing forest plantations within agricultural farms, like hybrid poplar crops. Moreover, the results of the case study here presented highlight the relevance of hybrid poplar plantations in Italy, in the context of sustainable development strategies under a green economy perspective.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10342-020-01300-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2107-1038</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-4669
ispartof European journal of forest research, 2020-12, Vol.139 (6), p.981-988
issn 1612-4669
1612-4677
language eng
recordid cdi_proquest_journals_2471166432
source Springer Online Journals Complete
subjects Biomedical and Life Sciences
Development strategies
Farming
Farms
Forest management
Forestry
Green economy
Hardwoods
Image resolution
Life Sciences
Original Paper
Plant Ecology
Plant Sciences
Plantations
Polls & surveys
Poplar
Remote sensing
Sampling
Sustainable development
Tessellation
Wood products
title Probabilistic sampling and estimation for large-scale assessment of poplar plantations in Northern Italy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20sampling%20and%20estimation%20for%20large-scale%20assessment%20of%20poplar%20plantations%20in%20Northern%20Italy&rft.jtitle=European%20journal%20of%20forest%20research&rft.au=Corona,%20Piermaria&rft.date=2020-12-01&rft.volume=139&rft.issue=6&rft.spage=981&rft.epage=988&rft.pages=981-988&rft.issn=1612-4669&rft.eissn=1612-4677&rft_id=info:doi/10.1007/s10342-020-01300-9&rft_dat=%3Cproquest_cross%3E2471166432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471166432&rft_id=info:pmid/&rfr_iscdi=true