Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering

In the area of polymer crystallization, the most widely used techniques to quantify structure, morphology and molecular orientation are fundamentally based on light or X‐ray scattering and absorption. In particular, synchrotron X‐rays are used for detailed studies on the semicrystalline structure in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer crystallization 2020-12, Vol.3 (6), p.n/a
Hauptverfasser: Looijmans, Stan F. S. P., Carmeli, Enrico, Puskar, Ljiljana, Ellis, Gary, Cavallo, Dario, Anderson, Patrick D., Breemen, Lambèrt C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Polymer crystallization
container_volume 3
creator Looijmans, Stan F. S. P.
Carmeli, Enrico
Puskar, Ljiljana
Ellis, Gary
Cavallo, Dario
Anderson, Patrick D.
Breemen, Lambèrt C. A.
description In the area of polymer crystallization, the most widely used techniques to quantify structure, morphology and molecular orientation are fundamentally based on light or X‐ray scattering and absorption. In particular, synchrotron X‐rays are used for detailed studies on the semicrystalline structure in polymeric materials. The technical requirements for such techniques, especially when high spatial resolution is essential, make the application of X‐ray diffraction not straightforward. Direct information on the chain orientation in different semicrystalline morphologies requires rather complex sampling and analysis procedures. Surprisingly, a simple yet versatile technique based on infrared spectroscopy is hardly applied in the field of polymer crystallization. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. In this article, we provide the relevant details of the polarization modulated infrared microspectroscopy technique for the study of semicrystalline materials from an engineering perspective. We demonstrate the essence of the method using as model systems spherulitic and transcrystalline morphologies and present its applicability to polymer/fiber composite technology and the study of injection‐molded parts. The results provided in the present work serve to illustrate the applicability of this informative technique in the field of semicrystalline polymer science. Properties of polymeric materials are to a large extent determined by their microstructure. In semicrystalline polymers the crystal structure, morphology and molecular orientation are generally quantified using optical techniques, in particular synchrotron X‐ray scattering and diffraction. A versatile technique based on infrared spectroscopy is emerging. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. This polarization modulation method is applied to several orientation related challenges in the crystallization of isotactic polypropylene.
doi_str_mv 10.1002/pcr2.10138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471142250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471142250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3748-a36f886c8ec318abf0961cc63765c71879d350fb46e1187835bac9298e103bab3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKx78RcEvAnVfLRJ6m1Z_IIFF9FzSNN0ydImNWmR-uvNWg-ePM078MwM8wBwidENRojc9jqQlDAVJ2BBCk4zznB5-iefg1WMB4QQFoySki9AtfOtCvZLDdY72Pl6bNVgamhdE1RIIfZGD8FH7fvpDq5hH9S-S7SGg_ctbHyAvW-nzgQYtTVOG6hcDY3bW2dMsG5_Ac4a1Uaz-q1L8P5w_7Z5yrYvj8-b9TbTlOciU5Q1QjAtjKZYqKpBJcNaM8pZoTkWvKxpgZoqZwanTtCiUrokpTAY0UpVdAmu5r198B-jiYM8-DG4dFKSnGOcE1KgRF3PlE5PxWAa2QfbqTBJjORRozxqlD8aE4xn-NO2ZvqHlLvNK5lnvgEMmHT5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471142250</pqid></control><display><type>article</type><title>Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering</title><source>Access via Wiley Online Library</source><creator>Looijmans, Stan F. S. P. ; Carmeli, Enrico ; Puskar, Ljiljana ; Ellis, Gary ; Cavallo, Dario ; Anderson, Patrick D. ; Breemen, Lambèrt C. A.</creator><creatorcontrib>Looijmans, Stan F. S. P. ; Carmeli, Enrico ; Puskar, Ljiljana ; Ellis, Gary ; Cavallo, Dario ; Anderson, Patrick D. ; Breemen, Lambèrt C. A.</creatorcontrib><description>In the area of polymer crystallization, the most widely used techniques to quantify structure, morphology and molecular orientation are fundamentally based on light or X‐ray scattering and absorption. In particular, synchrotron X‐rays are used for detailed studies on the semicrystalline structure in polymeric materials. The technical requirements for such techniques, especially when high spatial resolution is essential, make the application of X‐ray diffraction not straightforward. Direct information on the chain orientation in different semicrystalline morphologies requires rather complex sampling and analysis procedures. Surprisingly, a simple yet versatile technique based on infrared spectroscopy is hardly applied in the field of polymer crystallization. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. In this article, we provide the relevant details of the polarization modulated infrared microspectroscopy technique for the study of semicrystalline materials from an engineering perspective. We demonstrate the essence of the method using as model systems spherulitic and transcrystalline morphologies and present its applicability to polymer/fiber composite technology and the study of injection‐molded parts. The results provided in the present work serve to illustrate the applicability of this informative technique in the field of semicrystalline polymer science. Properties of polymeric materials are to a large extent determined by their microstructure. In semicrystalline polymers the crystal structure, morphology and molecular orientation are generally quantified using optical techniques, in particular synchrotron X‐ray scattering and diffraction. A versatile technique based on infrared spectroscopy is emerging. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. This polarization modulation method is applied to several orientation related challenges in the crystallization of isotactic polypropylene.</description><identifier>ISSN: 2573-7619</identifier><identifier>EISSN: 2573-7619</identifier><identifier>DOI: 10.1002/pcr2.10138</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Anisotropy ; Crystallization ; Fiber reinforced plastics ; Incident light ; Infrared analysis ; Infrared spectroscopy ; Molecular structure ; Morphology ; Polarization ; polarization modulation ; Polymers ; Spatial resolution ; Spectrum analysis ; structure and morphology ; synchrotron radiation ; Synchrotrons ; vibrational linear dichroism</subject><ispartof>Polymer crystallization, 2020-12, Vol.3 (6), p.n/a</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3748-a36f886c8ec318abf0961cc63765c71879d350fb46e1187835bac9298e103bab3</citedby><cites>FETCH-LOGICAL-c3748-a36f886c8ec318abf0961cc63765c71879d350fb46e1187835bac9298e103bab3</cites><orcidid>0000-0002-4148-8351 ; 0000-0002-0610-1908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpcr2.10138$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpcr2.10138$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Looijmans, Stan F. S. P.</creatorcontrib><creatorcontrib>Carmeli, Enrico</creatorcontrib><creatorcontrib>Puskar, Ljiljana</creatorcontrib><creatorcontrib>Ellis, Gary</creatorcontrib><creatorcontrib>Cavallo, Dario</creatorcontrib><creatorcontrib>Anderson, Patrick D.</creatorcontrib><creatorcontrib>Breemen, Lambèrt C. A.</creatorcontrib><title>Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering</title><title>Polymer crystallization</title><description>In the area of polymer crystallization, the most widely used techniques to quantify structure, morphology and molecular orientation are fundamentally based on light or X‐ray scattering and absorption. In particular, synchrotron X‐rays are used for detailed studies on the semicrystalline structure in polymeric materials. The technical requirements for such techniques, especially when high spatial resolution is essential, make the application of X‐ray diffraction not straightforward. Direct information on the chain orientation in different semicrystalline morphologies requires rather complex sampling and analysis procedures. Surprisingly, a simple yet versatile technique based on infrared spectroscopy is hardly applied in the field of polymer crystallization. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. In this article, we provide the relevant details of the polarization modulated infrared microspectroscopy technique for the study of semicrystalline materials from an engineering perspective. We demonstrate the essence of the method using as model systems spherulitic and transcrystalline morphologies and present its applicability to polymer/fiber composite technology and the study of injection‐molded parts. The results provided in the present work serve to illustrate the applicability of this informative technique in the field of semicrystalline polymer science. Properties of polymeric materials are to a large extent determined by their microstructure. In semicrystalline polymers the crystal structure, morphology and molecular orientation are generally quantified using optical techniques, in particular synchrotron X‐ray scattering and diffraction. A versatile technique based on infrared spectroscopy is emerging. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. This polarization modulation method is applied to several orientation related challenges in the crystallization of isotactic polypropylene.</description><subject>Anisotropy</subject><subject>Crystallization</subject><subject>Fiber reinforced plastics</subject><subject>Incident light</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Polarization</subject><subject>polarization modulation</subject><subject>Polymers</subject><subject>Spatial resolution</subject><subject>Spectrum analysis</subject><subject>structure and morphology</subject><subject>synchrotron radiation</subject><subject>Synchrotrons</subject><subject>vibrational linear dichroism</subject><issn>2573-7619</issn><issn>2573-7619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE1LxDAQhoMouKx78RcEvAnVfLRJ6m1Z_IIFF9FzSNN0ydImNWmR-uvNWg-ePM078MwM8wBwidENRojc9jqQlDAVJ2BBCk4zznB5-iefg1WMB4QQFoySki9AtfOtCvZLDdY72Pl6bNVgamhdE1RIIfZGD8FH7fvpDq5hH9S-S7SGg_ctbHyAvW-nzgQYtTVOG6hcDY3bW2dMsG5_Ac4a1Uaz-q1L8P5w_7Z5yrYvj8-b9TbTlOciU5Q1QjAtjKZYqKpBJcNaM8pZoTkWvKxpgZoqZwanTtCiUrokpTAY0UpVdAmu5r198B-jiYM8-DG4dFKSnGOcE1KgRF3PlE5PxWAa2QfbqTBJjORRozxqlD8aE4xn-NO2ZvqHlLvNK5lnvgEMmHT5</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Looijmans, Stan F. S. P.</creator><creator>Carmeli, Enrico</creator><creator>Puskar, Ljiljana</creator><creator>Ellis, Gary</creator><creator>Cavallo, Dario</creator><creator>Anderson, Patrick D.</creator><creator>Breemen, Lambèrt C. A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4148-8351</orcidid><orcidid>https://orcid.org/0000-0002-0610-1908</orcidid></search><sort><creationdate>202012</creationdate><title>Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering</title><author>Looijmans, Stan F. S. P. ; Carmeli, Enrico ; Puskar, Ljiljana ; Ellis, Gary ; Cavallo, Dario ; Anderson, Patrick D. ; Breemen, Lambèrt C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3748-a36f886c8ec318abf0961cc63765c71879d350fb46e1187835bac9298e103bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Crystallization</topic><topic>Fiber reinforced plastics</topic><topic>Incident light</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Polarization</topic><topic>polarization modulation</topic><topic>Polymers</topic><topic>Spatial resolution</topic><topic>Spectrum analysis</topic><topic>structure and morphology</topic><topic>synchrotron radiation</topic><topic>Synchrotrons</topic><topic>vibrational linear dichroism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Looijmans, Stan F. S. P.</creatorcontrib><creatorcontrib>Carmeli, Enrico</creatorcontrib><creatorcontrib>Puskar, Ljiljana</creatorcontrib><creatorcontrib>Ellis, Gary</creatorcontrib><creatorcontrib>Cavallo, Dario</creatorcontrib><creatorcontrib>Anderson, Patrick D.</creatorcontrib><creatorcontrib>Breemen, Lambèrt C. A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Polymer crystallization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Looijmans, Stan F. S. P.</au><au>Carmeli, Enrico</au><au>Puskar, Ljiljana</au><au>Ellis, Gary</au><au>Cavallo, Dario</au><au>Anderson, Patrick D.</au><au>Breemen, Lambèrt C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering</atitle><jtitle>Polymer crystallization</jtitle><date>2020-12</date><risdate>2020</risdate><volume>3</volume><issue>6</issue><epage>n/a</epage><issn>2573-7619</issn><eissn>2573-7619</eissn><abstract>In the area of polymer crystallization, the most widely used techniques to quantify structure, morphology and molecular orientation are fundamentally based on light or X‐ray scattering and absorption. In particular, synchrotron X‐rays are used for detailed studies on the semicrystalline structure in polymeric materials. The technical requirements for such techniques, especially when high spatial resolution is essential, make the application of X‐ray diffraction not straightforward. Direct information on the chain orientation in different semicrystalline morphologies requires rather complex sampling and analysis procedures. Surprisingly, a simple yet versatile technique based on infrared spectroscopy is hardly applied in the field of polymer crystallization. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. In this article, we provide the relevant details of the polarization modulated infrared microspectroscopy technique for the study of semicrystalline materials from an engineering perspective. We demonstrate the essence of the method using as model systems spherulitic and transcrystalline morphologies and present its applicability to polymer/fiber composite technology and the study of injection‐molded parts. The results provided in the present work serve to illustrate the applicability of this informative technique in the field of semicrystalline polymer science. Properties of polymeric materials are to a large extent determined by their microstructure. In semicrystalline polymers the crystal structure, morphology and molecular orientation are generally quantified using optical techniques, in particular synchrotron X‐ray scattering and diffraction. A versatile technique based on infrared spectroscopy is emerging. By modulating the polarization of the incident light, local anisotropy can be studied in real time on a submolecular length scale. This polarization modulation method is applied to several orientation related challenges in the crystallization of isotactic polypropylene.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pcr2.10138</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4148-8351</orcidid><orcidid>https://orcid.org/0000-0002-0610-1908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2573-7619
ispartof Polymer crystallization, 2020-12, Vol.3 (6), p.n/a
issn 2573-7619
2573-7619
language eng
recordid cdi_proquest_journals_2471142250
source Access via Wiley Online Library
subjects Anisotropy
Crystallization
Fiber reinforced plastics
Incident light
Infrared analysis
Infrared spectroscopy
Molecular structure
Morphology
Polarization
polarization modulation
Polymers
Spatial resolution
Spectrum analysis
structure and morphology
synchrotron radiation
Synchrotrons
vibrational linear dichroism
title Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20modulated%20infrared%20spectroscopy:%20A%20pragmatic%20tool%20for%20polymer%20science%20and%20engineering&rft.jtitle=Polymer%20crystallization&rft.au=Looijmans,%20Stan%20F.%20S.%20P.&rft.date=2020-12&rft.volume=3&rft.issue=6&rft.epage=n/a&rft.issn=2573-7619&rft.eissn=2573-7619&rft_id=info:doi/10.1002/pcr2.10138&rft_dat=%3Cproquest_cross%3E2471142250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471142250&rft_id=info:pmid/&rfr_iscdi=true