Numerical modeling of two microwave sensors for biomedical applications
The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The tw...
Gespeichert in:
Veröffentlicht in: | International journal of numerical modelling 2021-01, Vol.34 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of numerical modelling |
container_volume | 34 |
creator | Bao, Xiue Crupi, Giovanni Ocket, Ilja Bao, Juncheng Ceyssens, Frederik Kraft, Michael Nauwelaers, Bart Schreurs, Dominique |
description | The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%. |
doi_str_mv | 10.1002/jnm.2810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471064130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471064130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</originalsourceid><addsrcrecordid>eNp10MFOwzAMBuAIgcQYSDxCJC5cOuwka9IjmmCAxrjAOWraBGVqm5JsTHv7dRtXTvbhsy3_hNwiTBCAPay6dsIUwhkZIRRFhgzEORmBKkTGuYRLcpXSCgA4TtmIzJeb1kZflQ1tQ20b333T4Oh6G2jrqxi25a-lyXYpxERdiNT40Nr6OFD2fTM0ax-6dE0uXNkke_NXx-Tr-elz9pItPuavs8dFVnEmIauMA6U4yJpPDQimClaLHAQWYJiRRri8ZNPcSZejUQyUkHXNK0TlpLJo-Jjcnfb2MfxsbFrrVdjEbjipmZAIuUAOg7o_qeGDlKJ1uo--LeNOI-hDTHqISR9iGmh2olvf2N2_Tr8t349-D1VeZ-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471064130</pqid></control><display><type>article</type><title>Numerical modeling of two microwave sensors for biomedical applications</title><source>Access via Wiley Online Library</source><creator>Bao, Xiue ; Crupi, Giovanni ; Ocket, Ilja ; Bao, Juncheng ; Ceyssens, Frederik ; Kraft, Michael ; Nauwelaers, Bart ; Schreurs, Dominique</creator><creatorcontrib>Bao, Xiue ; Crupi, Giovanni ; Ocket, Ilja ; Bao, Juncheng ; Ceyssens, Frederik ; Kraft, Michael ; Nauwelaers, Bart ; Schreurs, Dominique</creatorcontrib><description>The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.2810</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>bioengineering ; Biomedical materials ; Broadband ; Complex permittivity ; Conformal mapping ; coplanar waveguide ; Coplanar waveguides ; Dielectric properties ; dielectric property ; Finite element method ; Frequency ranges ; interdigital electrodes ; Mathematical models ; Microfluidics ; Microwave sensors ; Numerical analysis ; numerical modeling ; Saline solutions ; Sensors ; Transmission lines</subject><ispartof>International journal of numerical modelling, 2021-01, Vol.34 (1), p.n/a</ispartof><rights>2020 John Wiley & Sons, Ltd</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</citedby><cites>FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</cites><orcidid>0000-0003-4689-9130 ; 0000-0002-6666-6812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.2810$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.2810$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bao, Xiue</creatorcontrib><creatorcontrib>Crupi, Giovanni</creatorcontrib><creatorcontrib>Ocket, Ilja</creatorcontrib><creatorcontrib>Bao, Juncheng</creatorcontrib><creatorcontrib>Ceyssens, Frederik</creatorcontrib><creatorcontrib>Kraft, Michael</creatorcontrib><creatorcontrib>Nauwelaers, Bart</creatorcontrib><creatorcontrib>Schreurs, Dominique</creatorcontrib><title>Numerical modeling of two microwave sensors for biomedical applications</title><title>International journal of numerical modelling</title><description>The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.</description><subject>bioengineering</subject><subject>Biomedical materials</subject><subject>Broadband</subject><subject>Complex permittivity</subject><subject>Conformal mapping</subject><subject>coplanar waveguide</subject><subject>Coplanar waveguides</subject><subject>Dielectric properties</subject><subject>dielectric property</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>interdigital electrodes</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Microwave sensors</subject><subject>Numerical analysis</subject><subject>numerical modeling</subject><subject>Saline solutions</subject><subject>Sensors</subject><subject>Transmission lines</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10MFOwzAMBuAIgcQYSDxCJC5cOuwka9IjmmCAxrjAOWraBGVqm5JsTHv7dRtXTvbhsy3_hNwiTBCAPay6dsIUwhkZIRRFhgzEORmBKkTGuYRLcpXSCgA4TtmIzJeb1kZflQ1tQ20b333T4Oh6G2jrqxi25a-lyXYpxERdiNT40Nr6OFD2fTM0ax-6dE0uXNkke_NXx-Tr-elz9pItPuavs8dFVnEmIauMA6U4yJpPDQimClaLHAQWYJiRRri8ZNPcSZejUQyUkHXNK0TlpLJo-Jjcnfb2MfxsbFrrVdjEbjipmZAIuUAOg7o_qeGDlKJ1uo--LeNOI-hDTHqISR9iGmh2olvf2N2_Tr8t349-D1VeZ-w</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Bao, Xiue</creator><creator>Crupi, Giovanni</creator><creator>Ocket, Ilja</creator><creator>Bao, Juncheng</creator><creator>Ceyssens, Frederik</creator><creator>Kraft, Michael</creator><creator>Nauwelaers, Bart</creator><creator>Schreurs, Dominique</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4689-9130</orcidid><orcidid>https://orcid.org/0000-0002-6666-6812</orcidid></search><sort><creationdate>202101</creationdate><title>Numerical modeling of two microwave sensors for biomedical applications</title><author>Bao, Xiue ; Crupi, Giovanni ; Ocket, Ilja ; Bao, Juncheng ; Ceyssens, Frederik ; Kraft, Michael ; Nauwelaers, Bart ; Schreurs, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioengineering</topic><topic>Biomedical materials</topic><topic>Broadband</topic><topic>Complex permittivity</topic><topic>Conformal mapping</topic><topic>coplanar waveguide</topic><topic>Coplanar waveguides</topic><topic>Dielectric properties</topic><topic>dielectric property</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>interdigital electrodes</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Microwave sensors</topic><topic>Numerical analysis</topic><topic>numerical modeling</topic><topic>Saline solutions</topic><topic>Sensors</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Xiue</creatorcontrib><creatorcontrib>Crupi, Giovanni</creatorcontrib><creatorcontrib>Ocket, Ilja</creatorcontrib><creatorcontrib>Bao, Juncheng</creatorcontrib><creatorcontrib>Ceyssens, Frederik</creatorcontrib><creatorcontrib>Kraft, Michael</creatorcontrib><creatorcontrib>Nauwelaers, Bart</creatorcontrib><creatorcontrib>Schreurs, Dominique</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Xiue</au><au>Crupi, Giovanni</au><au>Ocket, Ilja</au><au>Bao, Juncheng</au><au>Ceyssens, Frederik</au><au>Kraft, Michael</au><au>Nauwelaers, Bart</au><au>Schreurs, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of two microwave sensors for biomedical applications</atitle><jtitle>International journal of numerical modelling</jtitle><date>2021-01</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/jnm.2810</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4689-9130</orcidid><orcidid>https://orcid.org/0000-0002-6666-6812</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3370 |
ispartof | International journal of numerical modelling, 2021-01, Vol.34 (1), p.n/a |
issn | 0894-3370 1099-1204 |
language | eng |
recordid | cdi_proquest_journals_2471064130 |
source | Access via Wiley Online Library |
subjects | bioengineering Biomedical materials Broadband Complex permittivity Conformal mapping coplanar waveguide Coplanar waveguides Dielectric properties dielectric property Finite element method Frequency ranges interdigital electrodes Mathematical models Microfluidics Microwave sensors Numerical analysis numerical modeling Saline solutions Sensors Transmission lines |
title | Numerical modeling of two microwave sensors for biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20two%20microwave%20sensors%20for%20biomedical%20applications&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Bao,%20Xiue&rft.date=2021-01&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.2810&rft_dat=%3Cproquest_cross%3E2471064130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471064130&rft_id=info:pmid/&rfr_iscdi=true |