Numerical modeling of two microwave sensors for biomedical applications

The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical modelling 2021-01, Vol.34 (1), p.n/a
Hauptverfasser: Bao, Xiue, Crupi, Giovanni, Ocket, Ilja, Bao, Juncheng, Ceyssens, Frederik, Kraft, Michael, Nauwelaers, Bart, Schreurs, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title International journal of numerical modelling
container_volume 34
creator Bao, Xiue
Crupi, Giovanni
Ocket, Ilja
Bao, Juncheng
Ceyssens, Frederik
Kraft, Michael
Nauwelaers, Bart
Schreurs, Dominique
description The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.
doi_str_mv 10.1002/jnm.2810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471064130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471064130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</originalsourceid><addsrcrecordid>eNp10MFOwzAMBuAIgcQYSDxCJC5cOuwka9IjmmCAxrjAOWraBGVqm5JsTHv7dRtXTvbhsy3_hNwiTBCAPay6dsIUwhkZIRRFhgzEORmBKkTGuYRLcpXSCgA4TtmIzJeb1kZflQ1tQ20b333T4Oh6G2jrqxi25a-lyXYpxERdiNT40Nr6OFD2fTM0ax-6dE0uXNkke_NXx-Tr-elz9pItPuavs8dFVnEmIauMA6U4yJpPDQimClaLHAQWYJiRRri8ZNPcSZejUQyUkHXNK0TlpLJo-Jjcnfb2MfxsbFrrVdjEbjipmZAIuUAOg7o_qeGDlKJ1uo--LeNOI-hDTHqISR9iGmh2olvf2N2_Tr8t349-D1VeZ-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471064130</pqid></control><display><type>article</type><title>Numerical modeling of two microwave sensors for biomedical applications</title><source>Access via Wiley Online Library</source><creator>Bao, Xiue ; Crupi, Giovanni ; Ocket, Ilja ; Bao, Juncheng ; Ceyssens, Frederik ; Kraft, Michael ; Nauwelaers, Bart ; Schreurs, Dominique</creator><creatorcontrib>Bao, Xiue ; Crupi, Giovanni ; Ocket, Ilja ; Bao, Juncheng ; Ceyssens, Frederik ; Kraft, Michael ; Nauwelaers, Bart ; Schreurs, Dominique</creatorcontrib><description>The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.2810</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>bioengineering ; Biomedical materials ; Broadband ; Complex permittivity ; Conformal mapping ; coplanar waveguide ; Coplanar waveguides ; Dielectric properties ; dielectric property ; Finite element method ; Frequency ranges ; interdigital electrodes ; Mathematical models ; Microfluidics ; Microwave sensors ; Numerical analysis ; numerical modeling ; Saline solutions ; Sensors ; Transmission lines</subject><ispartof>International journal of numerical modelling, 2021-01, Vol.34 (1), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</citedby><cites>FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</cites><orcidid>0000-0003-4689-9130 ; 0000-0002-6666-6812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.2810$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.2810$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bao, Xiue</creatorcontrib><creatorcontrib>Crupi, Giovanni</creatorcontrib><creatorcontrib>Ocket, Ilja</creatorcontrib><creatorcontrib>Bao, Juncheng</creatorcontrib><creatorcontrib>Ceyssens, Frederik</creatorcontrib><creatorcontrib>Kraft, Michael</creatorcontrib><creatorcontrib>Nauwelaers, Bart</creatorcontrib><creatorcontrib>Schreurs, Dominique</creatorcontrib><title>Numerical modeling of two microwave sensors for biomedical applications</title><title>International journal of numerical modelling</title><description>The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.</description><subject>bioengineering</subject><subject>Biomedical materials</subject><subject>Broadband</subject><subject>Complex permittivity</subject><subject>Conformal mapping</subject><subject>coplanar waveguide</subject><subject>Coplanar waveguides</subject><subject>Dielectric properties</subject><subject>dielectric property</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>interdigital electrodes</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Microwave sensors</subject><subject>Numerical analysis</subject><subject>numerical modeling</subject><subject>Saline solutions</subject><subject>Sensors</subject><subject>Transmission lines</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10MFOwzAMBuAIgcQYSDxCJC5cOuwka9IjmmCAxrjAOWraBGVqm5JsTHv7dRtXTvbhsy3_hNwiTBCAPay6dsIUwhkZIRRFhgzEORmBKkTGuYRLcpXSCgA4TtmIzJeb1kZflQ1tQ20b333T4Oh6G2jrqxi25a-lyXYpxERdiNT40Nr6OFD2fTM0ax-6dE0uXNkke_NXx-Tr-elz9pItPuavs8dFVnEmIauMA6U4yJpPDQimClaLHAQWYJiRRri8ZNPcSZejUQyUkHXNK0TlpLJo-Jjcnfb2MfxsbFrrVdjEbjipmZAIuUAOg7o_qeGDlKJ1uo--LeNOI-hDTHqISR9iGmh2olvf2N2_Tr8t349-D1VeZ-w</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Bao, Xiue</creator><creator>Crupi, Giovanni</creator><creator>Ocket, Ilja</creator><creator>Bao, Juncheng</creator><creator>Ceyssens, Frederik</creator><creator>Kraft, Michael</creator><creator>Nauwelaers, Bart</creator><creator>Schreurs, Dominique</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4689-9130</orcidid><orcidid>https://orcid.org/0000-0002-6666-6812</orcidid></search><sort><creationdate>202101</creationdate><title>Numerical modeling of two microwave sensors for biomedical applications</title><author>Bao, Xiue ; Crupi, Giovanni ; Ocket, Ilja ; Bao, Juncheng ; Ceyssens, Frederik ; Kraft, Michael ; Nauwelaers, Bart ; Schreurs, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-cbf088307d35b042892d4604190b2b7b4f6a256f7f61b820847dd3c118f78e1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioengineering</topic><topic>Biomedical materials</topic><topic>Broadband</topic><topic>Complex permittivity</topic><topic>Conformal mapping</topic><topic>coplanar waveguide</topic><topic>Coplanar waveguides</topic><topic>Dielectric properties</topic><topic>dielectric property</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>interdigital electrodes</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Microwave sensors</topic><topic>Numerical analysis</topic><topic>numerical modeling</topic><topic>Saline solutions</topic><topic>Sensors</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Xiue</creatorcontrib><creatorcontrib>Crupi, Giovanni</creatorcontrib><creatorcontrib>Ocket, Ilja</creatorcontrib><creatorcontrib>Bao, Juncheng</creatorcontrib><creatorcontrib>Ceyssens, Frederik</creatorcontrib><creatorcontrib>Kraft, Michael</creatorcontrib><creatorcontrib>Nauwelaers, Bart</creatorcontrib><creatorcontrib>Schreurs, Dominique</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Xiue</au><au>Crupi, Giovanni</au><au>Ocket, Ilja</au><au>Bao, Juncheng</au><au>Ceyssens, Frederik</au><au>Kraft, Michael</au><au>Nauwelaers, Bart</au><au>Schreurs, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of two microwave sensors for biomedical applications</atitle><jtitle>International journal of numerical modelling</jtitle><date>2021-01</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>The purpose of this invited paper is to give readers a critical and comprehensive overview on how to extract dielectric properties of a bioliquid within a broad frequency range. Two sensors are used in the paper to characterize saline solutions by measuring the broadband complex permittivity. The two sensors are based on transmission line and interdigital electrodes designed for low‐ and high‐ frequency measurements, respectively, on the basis of the coplanar waveguide structure due to its convenience of fabrication and integration with microfluidic structures for liquid measurements. Different from traditional work where the finite element simulation method is used, the characterization theories of the two sensors are built based on a numerical modeling procedure, which can dramatically increase the device design efficiency, taking just a few seconds. Differently from the finite element method, the proposed numerical analysis utilizes a conformal mapping technique for both sensors. The characterization theories of the two sensors are validated by measuring de‐ionized water. The platform is finally used to measure 0.1 and 0.5 mol/L saline solutions within a broadband frequency range going from 10 up to 50 GHz, with the repeatability error within 5%.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/jnm.2810</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4689-9130</orcidid><orcidid>https://orcid.org/0000-0002-6666-6812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-3370
ispartof International journal of numerical modelling, 2021-01, Vol.34 (1), p.n/a
issn 0894-3370
1099-1204
language eng
recordid cdi_proquest_journals_2471064130
source Access via Wiley Online Library
subjects bioengineering
Biomedical materials
Broadband
Complex permittivity
Conformal mapping
coplanar waveguide
Coplanar waveguides
Dielectric properties
dielectric property
Finite element method
Frequency ranges
interdigital electrodes
Mathematical models
Microfluidics
Microwave sensors
Numerical analysis
numerical modeling
Saline solutions
Sensors
Transmission lines
title Numerical modeling of two microwave sensors for biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20two%20microwave%20sensors%20for%20biomedical%20applications&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Bao,%20Xiue&rft.date=2021-01&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.2810&rft_dat=%3Cproquest_cross%3E2471064130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471064130&rft_id=info:pmid/&rfr_iscdi=true