Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs

The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2020-12, Vol.20 (6), p.730-740
Hauptverfasser: Metcalfe, C., Kesler, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 6
container_start_page 730
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Metcalfe, C.
Kesler, O.
description The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (> 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.
doi_str_mv 10.1002/fuce.201900233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2470876719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470876719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EEqWwMltiTrHjxHHGKmqhUqGVAgMsluucRar8KXaiqhuPwDPyJLhqVUam--70_e50H0K3lIwoIeG96TWMQkJT3zB2hgaU0zjgIo7OTzril-jKuTUhNBEiGiAza0zVQ6MBtwY_ldq2rrO97nrrJw2eVKA72-oPqEutKrwEa1pbqyOwrJSrFc43Vu2gwM_lz9f3W_6Ox01bgMPeivPFNHPX6MKoysHNsQ5RPp28ZI_BfPEwy8bzQLOYsyDkoJOYF6kCsdKUJpRqwahSnLACCq5oCgwgNLDiwn_KTUpXyktgkYjZEN0dtm5s-9mD6-S67W3jD8owSohIeEJT7xodXPtfnQUjN7asld1JSuQ-SblPUp6S9EB6ALZlBbt_3HL6mk3-2F_5dXjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470876719</pqid></control><display><type>article</type><title>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Metcalfe, C. ; Kesler, O.</creator><creatorcontrib>Metcalfe, C. ; Kesler, O.</creatorcontrib><description>The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (&gt; 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201900233</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anode ; Anodes ; Computational fluid dynamics ; Correlation analysis ; Darcys law ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrode polarization ; Fluid flow ; Gas Diffusion ; Gases ; Microstructure ; Nickel ; Ni‐YSZ ; Parameters ; Phase boundaries ; Plasma ; Plasma Spray ; Plasma spraying ; Powder spraying ; Solid Oxide Fuel Cell ; Solid oxide fuel cells ; Spectrum analysis ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2020-12, Vol.20 (6), p.730-740</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</citedby><cites>FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201900233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201900233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Metcalfe, C.</creatorcontrib><creatorcontrib>Kesler, O.</creatorcontrib><title>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (&gt; 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.</description><subject>Anode</subject><subject>Anodes</subject><subject>Computational fluid dynamics</subject><subject>Correlation analysis</subject><subject>Darcys law</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Fluid flow</subject><subject>Gas Diffusion</subject><subject>Gases</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Ni‐YSZ</subject><subject>Parameters</subject><subject>Phase boundaries</subject><subject>Plasma</subject><subject>Plasma Spray</subject><subject>Plasma spraying</subject><subject>Powder spraying</subject><subject>Solid Oxide Fuel Cell</subject><subject>Solid oxide fuel cells</subject><subject>Spectrum analysis</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxi0EEqWwMltiTrHjxHHGKmqhUqGVAgMsluucRar8KXaiqhuPwDPyJLhqVUam--70_e50H0K3lIwoIeG96TWMQkJT3zB2hgaU0zjgIo7OTzril-jKuTUhNBEiGiAza0zVQ6MBtwY_ldq2rrO97nrrJw2eVKA72-oPqEutKrwEa1pbqyOwrJSrFc43Vu2gwM_lz9f3W_6Ox01bgMPeivPFNHPX6MKoysHNsQ5RPp28ZI_BfPEwy8bzQLOYsyDkoJOYF6kCsdKUJpRqwahSnLACCq5oCgwgNLDiwn_KTUpXyktgkYjZEN0dtm5s-9mD6-S67W3jD8owSohIeEJT7xodXPtfnQUjN7asld1JSuQ-SblPUp6S9EB6ALZlBbt_3HL6mk3-2F_5dXjI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Metcalfe, C.</creator><creator>Kesler, O.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202012</creationdate><title>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</title><author>Metcalfe, C. ; Kesler, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anode</topic><topic>Anodes</topic><topic>Computational fluid dynamics</topic><topic>Correlation analysis</topic><topic>Darcys law</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Fluid flow</topic><topic>Gas Diffusion</topic><topic>Gases</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Ni‐YSZ</topic><topic>Parameters</topic><topic>Phase boundaries</topic><topic>Plasma</topic><topic>Plasma Spray</topic><topic>Plasma spraying</topic><topic>Powder spraying</topic><topic>Solid Oxide Fuel Cell</topic><topic>Solid oxide fuel cells</topic><topic>Spectrum analysis</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalfe, C.</creatorcontrib><creatorcontrib>Kesler, O.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalfe, C.</au><au>Kesler, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>20</volume><issue>6</issue><spage>730</spage><epage>740</epage><pages>730-740</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (&gt; 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.201900233</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2020-12, Vol.20 (6), p.730-740
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_2470876719
source Wiley Online Library Journals Frontfile Complete
subjects Anode
Anodes
Computational fluid dynamics
Correlation analysis
Darcys law
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemistry
Electrode polarization
Fluid flow
Gas Diffusion
Gases
Microstructure
Nickel
Ni‐YSZ
Parameters
Phase boundaries
Plasma
Plasma Spray
Plasma spraying
Powder spraying
Solid Oxide Fuel Cell
Solid oxide fuel cells
Spectrum analysis
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
title Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Microstructure%20on%20Electrochemical%20Performance%20of%20Plasma%20Sprayed%20Ni%E2%80%90YSZ%20Anodes%20for%20SOFCs&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Metcalfe,%20C.&rft.date=2020-12&rft.volume=20&rft.issue=6&rft.spage=730&rft.epage=740&rft.pages=730-740&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201900233&rft_dat=%3Cproquest_cross%3E2470876719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470876719&rft_id=info:pmid/&rfr_iscdi=true