Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs
The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the t...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2020-12, Vol.20 (6), p.730-740 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 740 |
---|---|
container_issue | 6 |
container_start_page | 730 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Metcalfe, C. Kesler, O. |
description | The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (> 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures. |
doi_str_mv | 10.1002/fuce.201900233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2470876719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470876719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EEqWwMltiTrHjxHHGKmqhUqGVAgMsluucRar8KXaiqhuPwDPyJLhqVUam--70_e50H0K3lIwoIeG96TWMQkJT3zB2hgaU0zjgIo7OTzril-jKuTUhNBEiGiAza0zVQ6MBtwY_ldq2rrO97nrrJw2eVKA72-oPqEutKrwEa1pbqyOwrJSrFc43Vu2gwM_lz9f3W_6Ox01bgMPeivPFNHPX6MKoysHNsQ5RPp28ZI_BfPEwy8bzQLOYsyDkoJOYF6kCsdKUJpRqwahSnLACCq5oCgwgNLDiwn_KTUpXyktgkYjZEN0dtm5s-9mD6-S67W3jD8owSohIeEJT7xodXPtfnQUjN7asld1JSuQ-SblPUp6S9EB6ALZlBbt_3HL6mk3-2F_5dXjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470876719</pqid></control><display><type>article</type><title>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Metcalfe, C. ; Kesler, O.</creator><creatorcontrib>Metcalfe, C. ; Kesler, O.</creatorcontrib><description>The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (> 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201900233</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anode ; Anodes ; Computational fluid dynamics ; Correlation analysis ; Darcys law ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrode polarization ; Fluid flow ; Gas Diffusion ; Gases ; Microstructure ; Nickel ; Ni‐YSZ ; Parameters ; Phase boundaries ; Plasma ; Plasma Spray ; Plasma spraying ; Powder spraying ; Solid Oxide Fuel Cell ; Solid oxide fuel cells ; Spectrum analysis ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2020-12, Vol.20 (6), p.730-740</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</citedby><cites>FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201900233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201900233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Metcalfe, C.</creatorcontrib><creatorcontrib>Kesler, O.</creatorcontrib><title>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (> 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.</description><subject>Anode</subject><subject>Anodes</subject><subject>Computational fluid dynamics</subject><subject>Correlation analysis</subject><subject>Darcys law</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Fluid flow</subject><subject>Gas Diffusion</subject><subject>Gases</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Ni‐YSZ</subject><subject>Parameters</subject><subject>Phase boundaries</subject><subject>Plasma</subject><subject>Plasma Spray</subject><subject>Plasma spraying</subject><subject>Powder spraying</subject><subject>Solid Oxide Fuel Cell</subject><subject>Solid oxide fuel cells</subject><subject>Spectrum analysis</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxi0EEqWwMltiTrHjxHHGKmqhUqGVAgMsluucRar8KXaiqhuPwDPyJLhqVUam--70_e50H0K3lIwoIeG96TWMQkJT3zB2hgaU0zjgIo7OTzril-jKuTUhNBEiGiAza0zVQ6MBtwY_ldq2rrO97nrrJw2eVKA72-oPqEutKrwEa1pbqyOwrJSrFc43Vu2gwM_lz9f3W_6Ox01bgMPeivPFNHPX6MKoysHNsQ5RPp28ZI_BfPEwy8bzQLOYsyDkoJOYF6kCsdKUJpRqwahSnLACCq5oCgwgNLDiwn_KTUpXyktgkYjZEN0dtm5s-9mD6-S67W3jD8owSohIeEJT7xodXPtfnQUjN7asld1JSuQ-SblPUp6S9EB6ALZlBbt_3HL6mk3-2F_5dXjI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Metcalfe, C.</creator><creator>Kesler, O.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202012</creationdate><title>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</title><author>Metcalfe, C. ; Kesler, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3563-26ec756d9ae8bc11711c831aa603ded6a19e3ee2feb680196f91ba680e34853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anode</topic><topic>Anodes</topic><topic>Computational fluid dynamics</topic><topic>Correlation analysis</topic><topic>Darcys law</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Fluid flow</topic><topic>Gas Diffusion</topic><topic>Gases</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Ni‐YSZ</topic><topic>Parameters</topic><topic>Phase boundaries</topic><topic>Plasma</topic><topic>Plasma Spray</topic><topic>Plasma spraying</topic><topic>Powder spraying</topic><topic>Solid Oxide Fuel Cell</topic><topic>Solid oxide fuel cells</topic><topic>Spectrum analysis</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalfe, C.</creatorcontrib><creatorcontrib>Kesler, O.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalfe, C.</au><au>Kesler, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>20</volume><issue>6</issue><spage>730</spage><epage>740</epage><pages>730-740</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>The influence of anode microstructural parameters on the electrochemical performance of plasma sprayed solid oxide fuel cells with metal supports has been investigated. Electrochemical impedance spectroscopy (EIS) was used to correlate the measured polarization resistances associated with both the three‐phase boundary length density and gas diffusivity of porous nickel/yttria‐stabilized zirconia (YSZ) anodes. Each anode was deposited in atmospheric conditions using solution precursor plasma spraying (SPPS), dry‐powder plasma spraying (DPPS), or suspension plasma spraying (SPS). The high‐frequency (> 1 kHz) part of the impedance spectrum was found to correlate with the three‐phase boundary length per unit volume of each anode. The low‐frequency part of the impedance spectrum was found to correlate with diffusive transport of gases through the porous anode. Gas transport measurements in the context of the dusty gas model were used to extract microstructure‐dependent parameters that provided a quantitative comparison among the distinct microstructures obtained using the three plasma spray methods. These results were compared to measurements using Darcy's law, which yielded similar trends and provided an efficient method to more rapidly compare gas transport rates in porous electrodes having different structures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.201900233</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2020-12, Vol.20 (6), p.730-740 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_2470876719 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anode Anodes Computational fluid dynamics Correlation analysis Darcys law Electrochemical analysis Electrochemical impedance spectroscopy Electrochemistry Electrode polarization Fluid flow Gas Diffusion Gases Microstructure Nickel Ni‐YSZ Parameters Phase boundaries Plasma Plasma Spray Plasma spraying Powder spraying Solid Oxide Fuel Cell Solid oxide fuel cells Spectrum analysis Yttria-stabilized zirconia Yttrium oxide Zirconium dioxide |
title | Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni‐YSZ Anodes for SOFCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Microstructure%20on%20Electrochemical%20Performance%20of%20Plasma%20Sprayed%20Ni%E2%80%90YSZ%20Anodes%20for%20SOFCs&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Metcalfe,%20C.&rft.date=2020-12&rft.volume=20&rft.issue=6&rft.spage=730&rft.epage=740&rft.pages=730-740&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201900233&rft_dat=%3Cproquest_cross%3E2470876719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470876719&rft_id=info:pmid/&rfr_iscdi=true |