Photovoltaic Failure Diagnosis using Sequential Probabilistic Neural Network Model

With increasing the installation of the photovoltaic modules, the different failures on components of the system are dramatically increased and thus lead to a direct impact on system productivity and efficiency. Fault detection and diagnosis accurately have an extreme impact on the maintenance and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Zhu, Honglu, Zaki, Sayed A., Fakih, Mohammed Al, Abdelbaky, Mohamed Abdelkarim, Sayed, Ahmed Rabee, Mubaarak, Saif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Zhu, Honglu
Zaki, Sayed A.
Fakih, Mohammed Al
Abdelbaky, Mohamed Abdelkarim
Sayed, Ahmed Rabee
Mubaarak, Saif
description With increasing the installation of the photovoltaic modules, the different failures on components of the system are dramatically increased and thus lead to a direct impact on system productivity and efficiency. Fault detection and diagnosis accurately have an extreme impact on the maintenance and reliability of photovoltaic array. Moreover, for detecting the different faults, selecting the proper indicators for monitoring the system improves the fault diagnosis techniques performance and avoids the complexity of the system. In this paper, an efficient detection and diagnosis model for different fault types is proposed. This model has sequential steps. Firstly, the performance of seven indicators is initially analyzed to predict accurately the nonlinear output behavior of the photovoltaic system under changing environmental conditions, hence select the minimum indicators to detect the typical faults. Secondly, ten fault cases, considering single-fault types and another three faults considering multi-fault types, are investigated. At the same time, the impact of these faults on the selected indicators is deeply analyzed. Finally, the typical fault types are classified and detected effectively depending on three sequential probabilistic neural network models, which give a precise classification of the data inputs. Both theoretical and experimental tests are operated to validate the performance and effectiveness of the proposed model.
doi_str_mv 10.1109/ACCESS.2020.3043129
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2470643583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9285268</ieee_id><doaj_id>oai_doaj_org_article_973868ddd2a74cffb4400ac7bdb26a24</doaj_id><sourcerecordid>2470643583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-dda12ca549365112637edb4ed9007470e949fca3c9e1e8a05296a9ba3d736af33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuETi3OJX7PiISoFKpSAKZ2sTb4pLqIudgPh7XIIQe9nVaGd2VpNlZ5SMKSX64nIymS6XY0YYGXMiOGV6LztiVOoRL7jc_zcfZqcxrkmqMkGFOsoeH1585z9824Gr82twbR8wv3Kw2vjoYt5Ht1nlS3zvcdM5aPOH4CuoXOtilwgL7EMCF9h9-vCa33mL7Ul20EAb8fS3H2fP19Onye1ofn8zm1zOR7VQZTeyFiiroRCay4JSJrlCWwm0mhAlFEEtdFMDrzVSLIEUTEvQFXCruISG8-NsNuhaD2uzDe4Nwpfx4MwP4MPKQEgmWzRa8VKW1loGStRNUwlBCNSqshWTwETSOh-0tsGnV2Nn1r4Pm2TfsORFCl6Uu4t82KqDjzFg83eVErPLwgxZmF0W5jeLxDobWA4R_xialQWTJf8GiW2FgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470643583</pqid></control><display><type>article</type><title>Photovoltaic Failure Diagnosis using Sequential Probabilistic Neural Network Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Honglu ; Zaki, Sayed A. ; Fakih, Mohammed Al ; Abdelbaky, Mohamed Abdelkarim ; Sayed, Ahmed Rabee ; Mubaarak, Saif</creator><creatorcontrib>Zhu, Honglu ; Zaki, Sayed A. ; Fakih, Mohammed Al ; Abdelbaky, Mohamed Abdelkarim ; Sayed, Ahmed Rabee ; Mubaarak, Saif</creatorcontrib><description>With increasing the installation of the photovoltaic modules, the different failures on components of the system are dramatically increased and thus lead to a direct impact on system productivity and efficiency. Fault detection and diagnosis accurately have an extreme impact on the maintenance and reliability of photovoltaic array. Moreover, for detecting the different faults, selecting the proper indicators for monitoring the system improves the fault diagnosis techniques performance and avoids the complexity of the system. In this paper, an efficient detection and diagnosis model for different fault types is proposed. This model has sequential steps. Firstly, the performance of seven indicators is initially analyzed to predict accurately the nonlinear output behavior of the photovoltaic system under changing environmental conditions, hence select the minimum indicators to detect the typical faults. Secondly, ten fault cases, considering single-fault types and another three faults considering multi-fault types, are investigated. At the same time, the impact of these faults on the selected indicators is deeply analyzed. Finally, the typical fault types are classified and detected effectively depending on three sequential probabilistic neural network models, which give a precise classification of the data inputs. Both theoretical and experimental tests are operated to validate the performance and effectiveness of the proposed model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3043129</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit faults ; Fault detection ; fault detection and classification ; Fault diagnosis ; Feature extraction ; features calculation ; Indicators ; Mathematical model ; multi-fault cases ; Neural networks ; Photovoltaic ; Photovoltaic cells ; Photovoltaic systems ; sequential probabilistic neural network ; Support vector machines ; Training</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-dda12ca549365112637edb4ed9007470e949fca3c9e1e8a05296a9ba3d736af33</citedby><cites>FETCH-LOGICAL-c478t-dda12ca549365112637edb4ed9007470e949fca3c9e1e8a05296a9ba3d736af33</cites><orcidid>0000-0001-5855-7125 ; 0000-0002-8025-1867 ; 0000-0001-9756-503X ; 0000-0002-5120-6792 ; 0000-0001-7545-0039 ; 0000-0001-9817-1120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9285268$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhu, Honglu</creatorcontrib><creatorcontrib>Zaki, Sayed A.</creatorcontrib><creatorcontrib>Fakih, Mohammed Al</creatorcontrib><creatorcontrib>Abdelbaky, Mohamed Abdelkarim</creatorcontrib><creatorcontrib>Sayed, Ahmed Rabee</creatorcontrib><creatorcontrib>Mubaarak, Saif</creatorcontrib><title>Photovoltaic Failure Diagnosis using Sequential Probabilistic Neural Network Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>With increasing the installation of the photovoltaic modules, the different failures on components of the system are dramatically increased and thus lead to a direct impact on system productivity and efficiency. Fault detection and diagnosis accurately have an extreme impact on the maintenance and reliability of photovoltaic array. Moreover, for detecting the different faults, selecting the proper indicators for monitoring the system improves the fault diagnosis techniques performance and avoids the complexity of the system. In this paper, an efficient detection and diagnosis model for different fault types is proposed. This model has sequential steps. Firstly, the performance of seven indicators is initially analyzed to predict accurately the nonlinear output behavior of the photovoltaic system under changing environmental conditions, hence select the minimum indicators to detect the typical faults. Secondly, ten fault cases, considering single-fault types and another three faults considering multi-fault types, are investigated. At the same time, the impact of these faults on the selected indicators is deeply analyzed. Finally, the typical fault types are classified and detected effectively depending on three sequential probabilistic neural network models, which give a precise classification of the data inputs. Both theoretical and experimental tests are operated to validate the performance and effectiveness of the proposed model.</description><subject>Circuit faults</subject><subject>Fault detection</subject><subject>fault detection and classification</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>features calculation</subject><subject>Indicators</subject><subject>Mathematical model</subject><subject>multi-fault cases</subject><subject>Neural networks</subject><subject>Photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>sequential probabilistic neural network</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuETi3OJX7PiISoFKpSAKZ2sTb4pLqIudgPh7XIIQe9nVaGd2VpNlZ5SMKSX64nIymS6XY0YYGXMiOGV6LztiVOoRL7jc_zcfZqcxrkmqMkGFOsoeH1585z9824Gr82twbR8wv3Kw2vjoYt5Ht1nlS3zvcdM5aPOH4CuoXOtilwgL7EMCF9h9-vCa33mL7Ul20EAb8fS3H2fP19Onye1ofn8zm1zOR7VQZTeyFiiroRCay4JSJrlCWwm0mhAlFEEtdFMDrzVSLIEUTEvQFXCruISG8-NsNuhaD2uzDe4Nwpfx4MwP4MPKQEgmWzRa8VKW1loGStRNUwlBCNSqshWTwETSOh-0tsGnV2Nn1r4Pm2TfsORFCl6Uu4t82KqDjzFg83eVErPLwgxZmF0W5jeLxDobWA4R_xialQWTJf8GiW2FgA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhu, Honglu</creator><creator>Zaki, Sayed A.</creator><creator>Fakih, Mohammed Al</creator><creator>Abdelbaky, Mohamed Abdelkarim</creator><creator>Sayed, Ahmed Rabee</creator><creator>Mubaarak, Saif</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5855-7125</orcidid><orcidid>https://orcid.org/0000-0002-8025-1867</orcidid><orcidid>https://orcid.org/0000-0001-9756-503X</orcidid><orcidid>https://orcid.org/0000-0002-5120-6792</orcidid><orcidid>https://orcid.org/0000-0001-7545-0039</orcidid><orcidid>https://orcid.org/0000-0001-9817-1120</orcidid></search><sort><creationdate>20200101</creationdate><title>Photovoltaic Failure Diagnosis using Sequential Probabilistic Neural Network Model</title><author>Zhu, Honglu ; Zaki, Sayed A. ; Fakih, Mohammed Al ; Abdelbaky, Mohamed Abdelkarim ; Sayed, Ahmed Rabee ; Mubaarak, Saif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-dda12ca549365112637edb4ed9007470e949fca3c9e1e8a05296a9ba3d736af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuit faults</topic><topic>Fault detection</topic><topic>fault detection and classification</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>features calculation</topic><topic>Indicators</topic><topic>Mathematical model</topic><topic>multi-fault cases</topic><topic>Neural networks</topic><topic>Photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>sequential probabilistic neural network</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Honglu</creatorcontrib><creatorcontrib>Zaki, Sayed A.</creatorcontrib><creatorcontrib>Fakih, Mohammed Al</creatorcontrib><creatorcontrib>Abdelbaky, Mohamed Abdelkarim</creatorcontrib><creatorcontrib>Sayed, Ahmed Rabee</creatorcontrib><creatorcontrib>Mubaarak, Saif</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Honglu</au><au>Zaki, Sayed A.</au><au>Fakih, Mohammed Al</au><au>Abdelbaky, Mohamed Abdelkarim</au><au>Sayed, Ahmed Rabee</au><au>Mubaarak, Saif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic Failure Diagnosis using Sequential Probabilistic Neural Network Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With increasing the installation of the photovoltaic modules, the different failures on components of the system are dramatically increased and thus lead to a direct impact on system productivity and efficiency. Fault detection and diagnosis accurately have an extreme impact on the maintenance and reliability of photovoltaic array. Moreover, for detecting the different faults, selecting the proper indicators for monitoring the system improves the fault diagnosis techniques performance and avoids the complexity of the system. In this paper, an efficient detection and diagnosis model for different fault types is proposed. This model has sequential steps. Firstly, the performance of seven indicators is initially analyzed to predict accurately the nonlinear output behavior of the photovoltaic system under changing environmental conditions, hence select the minimum indicators to detect the typical faults. Secondly, ten fault cases, considering single-fault types and another three faults considering multi-fault types, are investigated. At the same time, the impact of these faults on the selected indicators is deeply analyzed. Finally, the typical fault types are classified and detected effectively depending on three sequential probabilistic neural network models, which give a precise classification of the data inputs. Both theoretical and experimental tests are operated to validate the performance and effectiveness of the proposed model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3043129</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5855-7125</orcidid><orcidid>https://orcid.org/0000-0002-8025-1867</orcidid><orcidid>https://orcid.org/0000-0001-9756-503X</orcidid><orcidid>https://orcid.org/0000-0002-5120-6792</orcidid><orcidid>https://orcid.org/0000-0001-7545-0039</orcidid><orcidid>https://orcid.org/0000-0001-9817-1120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2470643583
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Circuit faults
Fault detection
fault detection and classification
Fault diagnosis
Feature extraction
features calculation
Indicators
Mathematical model
multi-fault cases
Neural networks
Photovoltaic
Photovoltaic cells
Photovoltaic systems
sequential probabilistic neural network
Support vector machines
Training
title Photovoltaic Failure Diagnosis using Sequential Probabilistic Neural Network Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%20Failure%20Diagnosis%20using%20Sequential%20Probabilistic%20Neural%20Network%20Model&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Honglu&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3043129&rft_dat=%3Cproquest_doaj_%3E2470643583%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470643583&rft_id=info:pmid/&rft_ieee_id=9285268&rft_doaj_id=oai_doaj_org_article_973868ddd2a74cffb4400ac7bdb26a24&rfr_iscdi=true