Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles
Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliabi...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2021-01, Vol.39 (1), p.61-78 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | IEEE journal on selected areas in communications |
container_volume | 39 |
creator | Lu, Yuxin Cheng, Peng Chen, Zhuo Mow, Wai Ho Li, Yonghui Vucetic, Branka |
description | Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under poor channel conditions. However, the conventional system design suffers from several inherent limitations and is not optimized from the bit error rate (BER) perspective. In this article, we develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The learning mechanism of each DNN module is then analyzed based on information theory, offering insights into the explainable DNN architecture and its corresponding training method. We also adapt the proposed scheme to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access (OMA) and the conventional cooperative NOMA scheme in various scenarios. |
doi_str_mv | 10.1109/JSAC.2020.3036943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2470636304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9252945</ieee_id><sourcerecordid>2470636304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f5f2e3ad23712daec8b54b6ae312c19c3a0dc7f3c38645e134fa64a22a5512613</originalsourceid><addsrcrecordid>eNo9kF1PwjAYhRujiYj-AONNE6-Hbd-227wj81sQE_C6Kd07UoRttsOEfy8E4tW5ec45yUPINWcDzll-9zYdFgPBBBsAA51LOCE9rlSWMMayU9JjKUCSpVyfk4sYl4xxKTPRI-8PiC0db1adT2Y2ftMR2lD7ekGrJtCiaVoMtvO_SD8m4-E9nW5jh2v6gNEvamrrkn4GXzvfrjBekrPKriJeHbNPvp4eZ8VLMpo8vxbDUeJEDl1SqUog2FJAykVp0WVzJefaInDheO7AstKlFTjItFTIQVZWSyuEVYoLzaFPbg-7bWh-Nhg7s2w2od5dGiFTpkEDkzuKHygXmhgDVqYNfm3D1nBm9s7M3pnZOzNHZ7vOzaHjEfGfz4USuVTwB4mqZlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470636304</pqid></control><display><type>article</type><title>Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Yuxin ; Cheng, Peng ; Chen, Zhuo ; Mow, Wai Ho ; Li, Yonghui ; Vucetic, Branka</creator><creatorcontrib>Lu, Yuxin ; Cheng, Peng ; Chen, Zhuo ; Mow, Wai Ho ; Li, Yonghui ; Vucetic, Branka</creatorcontrib><description>Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under poor channel conditions. However, the conventional system design suffers from several inherent limitations and is not optimized from the bit error rate (BER) perspective. In this article, we develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The learning mechanism of each DNN module is then analyzed based on information theory, offering insights into the explainable DNN architecture and its corresponding training method. We also adapt the proposed scheme to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access (OMA) and the conventional cooperative NOMA scheme in various scenarios.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2020.3036943</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Australia ; Bit error rate ; Computer architecture ; Cooperative non-orthogonal multiple access ; Deep learning ; explainable deep learning ; Information theory ; Internet of Things ; Machine learning ; multi-task learning ; neural network ; NOMA ; Nonorthogonal multiple access ; Reliability aspects ; self-supervised learning ; Silicon carbide ; Simulation ; Systems design ; Training</subject><ispartof>IEEE journal on selected areas in communications, 2021-01, Vol.39 (1), p.61-78</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f5f2e3ad23712daec8b54b6ae312c19c3a0dc7f3c38645e134fa64a22a5512613</citedby><cites>FETCH-LOGICAL-c293t-f5f2e3ad23712daec8b54b6ae312c19c3a0dc7f3c38645e134fa64a22a5512613</cites><orcidid>0000-0003-1091-7894 ; 0000-0002-9011-7928 ; 0000-0003-1804-0476 ; 0000-0001-7702-1123 ; 0000-0002-2700-2001 ; 0000-0002-0471-943X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9252945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9252945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Yuxin</creatorcontrib><creatorcontrib>Cheng, Peng</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Mow, Wai Ho</creatorcontrib><creatorcontrib>Li, Yonghui</creatorcontrib><creatorcontrib>Vucetic, Branka</creatorcontrib><title>Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under poor channel conditions. However, the conventional system design suffers from several inherent limitations and is not optimized from the bit error rate (BER) perspective. In this article, we develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The learning mechanism of each DNN module is then analyzed based on information theory, offering insights into the explainable DNN architecture and its corresponding training method. We also adapt the proposed scheme to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access (OMA) and the conventional cooperative NOMA scheme in various scenarios.</description><subject>Artificial neural networks</subject><subject>Australia</subject><subject>Bit error rate</subject><subject>Computer architecture</subject><subject>Cooperative non-orthogonal multiple access</subject><subject>Deep learning</subject><subject>explainable deep learning</subject><subject>Information theory</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>multi-task learning</subject><subject>neural network</subject><subject>NOMA</subject><subject>Nonorthogonal multiple access</subject><subject>Reliability aspects</subject><subject>self-supervised learning</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>Systems design</subject><subject>Training</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAYhRujiYj-AONNE6-Hbd-227wj81sQE_C6Kd07UoRttsOEfy8E4tW5ec45yUPINWcDzll-9zYdFgPBBBsAA51LOCE9rlSWMMayU9JjKUCSpVyfk4sYl4xxKTPRI-8PiC0db1adT2Y2ftMR2lD7ekGrJtCiaVoMtvO_SD8m4-E9nW5jh2v6gNEvamrrkn4GXzvfrjBekrPKriJeHbNPvp4eZ8VLMpo8vxbDUeJEDl1SqUog2FJAykVp0WVzJefaInDheO7AstKlFTjItFTIQVZWSyuEVYoLzaFPbg-7bWh-Nhg7s2w2od5dGiFTpkEDkzuKHygXmhgDVqYNfm3D1nBm9s7M3pnZOzNHZ7vOzaHjEfGfz4USuVTwB4mqZlo</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lu, Yuxin</creator><creator>Cheng, Peng</creator><creator>Chen, Zhuo</creator><creator>Mow, Wai Ho</creator><creator>Li, Yonghui</creator><creator>Vucetic, Branka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1091-7894</orcidid><orcidid>https://orcid.org/0000-0002-9011-7928</orcidid><orcidid>https://orcid.org/0000-0003-1804-0476</orcidid><orcidid>https://orcid.org/0000-0001-7702-1123</orcidid><orcidid>https://orcid.org/0000-0002-2700-2001</orcidid><orcidid>https://orcid.org/0000-0002-0471-943X</orcidid></search><sort><creationdate>202101</creationdate><title>Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles</title><author>Lu, Yuxin ; Cheng, Peng ; Chen, Zhuo ; Mow, Wai Ho ; Li, Yonghui ; Vucetic, Branka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f5f2e3ad23712daec8b54b6ae312c19c3a0dc7f3c38645e134fa64a22a5512613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Australia</topic><topic>Bit error rate</topic><topic>Computer architecture</topic><topic>Cooperative non-orthogonal multiple access</topic><topic>Deep learning</topic><topic>explainable deep learning</topic><topic>Information theory</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>multi-task learning</topic><topic>neural network</topic><topic>NOMA</topic><topic>Nonorthogonal multiple access</topic><topic>Reliability aspects</topic><topic>self-supervised learning</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>Systems design</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yuxin</creatorcontrib><creatorcontrib>Cheng, Peng</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Mow, Wai Ho</creatorcontrib><creatorcontrib>Li, Yonghui</creatorcontrib><creatorcontrib>Vucetic, Branka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Yuxin</au><au>Cheng, Peng</au><au>Chen, Zhuo</au><au>Mow, Wai Ho</au><au>Li, Yonghui</au><au>Vucetic, Branka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2021-01</date><risdate>2021</risdate><volume>39</volume><issue>1</issue><spage>61</spage><epage>78</epage><pages>61-78</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under poor channel conditions. However, the conventional system design suffers from several inherent limitations and is not optimized from the bit error rate (BER) perspective. In this article, we develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The learning mechanism of each DNN module is then analyzed based on information theory, offering insights into the explainable DNN architecture and its corresponding training method. We also adapt the proposed scheme to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access (OMA) and the conventional cooperative NOMA scheme in various scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2020.3036943</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1091-7894</orcidid><orcidid>https://orcid.org/0000-0002-9011-7928</orcidid><orcidid>https://orcid.org/0000-0003-1804-0476</orcidid><orcidid>https://orcid.org/0000-0001-7702-1123</orcidid><orcidid>https://orcid.org/0000-0002-2700-2001</orcidid><orcidid>https://orcid.org/0000-0002-0471-943X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2021-01, Vol.39 (1), p.61-78 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_2470636304 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Australia Bit error rate Computer architecture Cooperative non-orthogonal multiple access Deep learning explainable deep learning Information theory Internet of Things Machine learning multi-task learning neural network NOMA Nonorthogonal multiple access Reliability aspects self-supervised learning Silicon carbide Simulation Systems design Training |
title | Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multi-Task%20Learning%20for%20Cooperative%20NOMA:%20System%20Design%20and%20Principles&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Lu,%20Yuxin&rft.date=2021-01&rft.volume=39&rft.issue=1&rft.spage=61&rft.epage=78&rft.pages=61-78&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2020.3036943&rft_dat=%3Cproquest_RIE%3E2470636304%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470636304&rft_id=info:pmid/&rft_ieee_id=9252945&rfr_iscdi=true |