Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities

The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2021, Vol.21 (1), p.125-142
Hauptverfasser: Hilliard, Jimmy E., Hilliard, Jitka, Ni, Yinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1
container_start_page 125
container_title Quantitative finance
container_volume 21
creator Hilliard, Jimmy E.
Hilliard, Jitka
Ni, Yinan
description The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.
doi_str_mv 10.1080/14697688.2020.1773519
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2470588425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470588425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhSdGE7X6CCYkbp0Kw1DAlcb4lzRxU9eEAaZFZ2AEqunGZ5dJq-5c3XtPvnNucoriDMEpggxeonrG6YyxaQWrLFGKCeJ7xdGol3TGZ_u_O2OHxXGMrxAiAiE_Kr5eonVLkFYGxJUPqezsh9FAhsamIJcG9F6bDiQPlO-HdcqCdbZf9-BDBiudMmBldOaCTNbHKyCHobNqPNzosk5bZeIFiMmrtwik02NSTrXJmnhSHLSyi-Z0NyfF4v5ucftYzp8fnm5v5qWqKUll29K2klBzCUmlpEYUaUMbzhuslc46NoRgaFqEs4SbTHCdQVNjShqOJ8X5NnYI_n1tYhKvfh1c_iiqmkLCWF2RTJEtpYKPMZhWDMH2MmwEgmJsWvw0Lcamxa7p7ANbn1He2fjnojWtIWecZeR6i1jX-tDLTx86LZLcdD60IdeYbfj_L99UYJKi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470588425</pqid></control><display><type>article</type><title>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Hilliard, Jimmy E. ; Hilliard, Jitka ; Ni, Yinan</creator><creatorcontrib>Hilliard, Jimmy E. ; Hilliard, Jitka ; Ni, Yinan</creatorcontrib><description>The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2020.1773519</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Arbitrage ; Hedge ratios ; Implied parameters ; Interest rates ; Practitioner Black-Scholes ; Short-lived arbitrage</subject><ispartof>Quantitative finance, 2021, Vol.21 (1), p.125-142</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</citedby><cites>FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2020.1773519$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2020.1773519$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,59624,60413</link.rule.ids></links><search><creatorcontrib>Hilliard, Jimmy E.</creatorcontrib><creatorcontrib>Hilliard, Jitka</creatorcontrib><creatorcontrib>Ni, Yinan</creatorcontrib><title>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</title><title>Quantitative finance</title><description>The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.</description><subject>Arbitrage</subject><subject>Hedge ratios</subject><subject>Implied parameters</subject><subject>Interest rates</subject><subject>Practitioner Black-Scholes</subject><subject>Short-lived arbitrage</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM1OAyEUhSdGE7X6CCYkbp0Kw1DAlcb4lzRxU9eEAaZFZ2AEqunGZ5dJq-5c3XtPvnNucoriDMEpggxeonrG6YyxaQWrLFGKCeJ7xdGol3TGZ_u_O2OHxXGMrxAiAiE_Kr5eonVLkFYGxJUPqezsh9FAhsamIJcG9F6bDiQPlO-HdcqCdbZf9-BDBiudMmBldOaCTNbHKyCHobNqPNzosk5bZeIFiMmrtwik02NSTrXJmnhSHLSyi-Z0NyfF4v5ucftYzp8fnm5v5qWqKUll29K2klBzCUmlpEYUaUMbzhuslc46NoRgaFqEs4SbTHCdQVNjShqOJ8X5NnYI_n1tYhKvfh1c_iiqmkLCWF2RTJEtpYKPMZhWDMH2MmwEgmJsWvw0Lcamxa7p7ANbn1He2fjnojWtIWecZeR6i1jX-tDLTx86LZLcdD60IdeYbfj_L99UYJKi</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hilliard, Jimmy E.</creator><creator>Hilliard, Jitka</creator><creator>Ni, Yinan</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</title><author>Hilliard, Jimmy E. ; Hilliard, Jitka ; Ni, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arbitrage</topic><topic>Hedge ratios</topic><topic>Implied parameters</topic><topic>Interest rates</topic><topic>Practitioner Black-Scholes</topic><topic>Short-lived arbitrage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilliard, Jimmy E.</creatorcontrib><creatorcontrib>Hilliard, Jitka</creatorcontrib><creatorcontrib>Ni, Yinan</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilliard, Jimmy E.</au><au>Hilliard, Jitka</au><au>Ni, Yinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</atitle><jtitle>Quantitative finance</jtitle><date>2021</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>125</spage><epage>142</epage><pages>125-142</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2020.1773519</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2021, Vol.21 (1), p.125-142
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_2470588425
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Arbitrage
Hedge ratios
Implied parameters
Interest rates
Practitioner Black-Scholes
Short-lived arbitrage
title Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20short-lived%20arbitrage%20model%20to%20compute%20minimum%20variance%20hedge%20ratios:%20application%20to%20indices,%20stocks%20and%20commodities&rft.jtitle=Quantitative%20finance&rft.au=Hilliard,%20Jimmy%20E.&rft.date=2021&rft.volume=21&rft.issue=1&rft.spage=125&rft.epage=142&rft.pages=125-142&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2020.1773519&rft_dat=%3Cproquest_econi%3E2470588425%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470588425&rft_id=info:pmid/&rfr_iscdi=true