Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities
The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that th...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2021, Vol.21 (1), p.125-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | Quantitative finance |
container_volume | 21 |
creator | Hilliard, Jimmy E. Hilliard, Jitka Ni, Yinan |
description | The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates. |
doi_str_mv | 10.1080/14697688.2020.1773519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2470588425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470588425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhSdGE7X6CCYkbp0Kw1DAlcb4lzRxU9eEAaZFZ2AEqunGZ5dJq-5c3XtPvnNucoriDMEpggxeonrG6YyxaQWrLFGKCeJ7xdGol3TGZ_u_O2OHxXGMrxAiAiE_Kr5eonVLkFYGxJUPqezsh9FAhsamIJcG9F6bDiQPlO-HdcqCdbZf9-BDBiudMmBldOaCTNbHKyCHobNqPNzosk5bZeIFiMmrtwik02NSTrXJmnhSHLSyi-Z0NyfF4v5ucftYzp8fnm5v5qWqKUll29K2klBzCUmlpEYUaUMbzhuslc46NoRgaFqEs4SbTHCdQVNjShqOJ8X5NnYI_n1tYhKvfh1c_iiqmkLCWF2RTJEtpYKPMZhWDMH2MmwEgmJsWvw0Lcamxa7p7ANbn1He2fjnojWtIWecZeR6i1jX-tDLTx86LZLcdD60IdeYbfj_L99UYJKi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470588425</pqid></control><display><type>article</type><title>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</title><source>Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Hilliard, Jimmy E. ; Hilliard, Jitka ; Ni, Yinan</creator><creatorcontrib>Hilliard, Jimmy E. ; Hilliard, Jitka ; Ni, Yinan</creatorcontrib><description>The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2020.1773519</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Arbitrage ; Hedge ratios ; Implied parameters ; Interest rates ; Practitioner Black-Scholes ; Short-lived arbitrage</subject><ispartof>Quantitative finance, 2021, Vol.21 (1), p.125-142</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</citedby><cites>FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2020.1773519$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2020.1773519$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,59624,60413</link.rule.ids></links><search><creatorcontrib>Hilliard, Jimmy E.</creatorcontrib><creatorcontrib>Hilliard, Jitka</creatorcontrib><creatorcontrib>Ni, Yinan</creatorcontrib><title>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</title><title>Quantitative finance</title><description>The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.</description><subject>Arbitrage</subject><subject>Hedge ratios</subject><subject>Implied parameters</subject><subject>Interest rates</subject><subject>Practitioner Black-Scholes</subject><subject>Short-lived arbitrage</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM1OAyEUhSdGE7X6CCYkbp0Kw1DAlcb4lzRxU9eEAaZFZ2AEqunGZ5dJq-5c3XtPvnNucoriDMEpggxeonrG6YyxaQWrLFGKCeJ7xdGol3TGZ_u_O2OHxXGMrxAiAiE_Kr5eonVLkFYGxJUPqezsh9FAhsamIJcG9F6bDiQPlO-HdcqCdbZf9-BDBiudMmBldOaCTNbHKyCHobNqPNzosk5bZeIFiMmrtwik02NSTrXJmnhSHLSyi-Z0NyfF4v5ucftYzp8fnm5v5qWqKUll29K2klBzCUmlpEYUaUMbzhuslc46NoRgaFqEs4SbTHCdQVNjShqOJ8X5NnYI_n1tYhKvfh1c_iiqmkLCWF2RTJEtpYKPMZhWDMH2MmwEgmJsWvw0Lcamxa7p7ANbn1He2fjnojWtIWecZeR6i1jX-tDLTx86LZLcdD60IdeYbfj_L99UYJKi</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hilliard, Jimmy E.</creator><creator>Hilliard, Jitka</creator><creator>Ni, Yinan</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</title><author>Hilliard, Jimmy E. ; Hilliard, Jitka ; Ni, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ff7f2a0d9a052cad171de7b99b3dcd0d93e5530ef139b33bad19d2cae4375b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arbitrage</topic><topic>Hedge ratios</topic><topic>Implied parameters</topic><topic>Interest rates</topic><topic>Practitioner Black-Scholes</topic><topic>Short-lived arbitrage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilliard, Jimmy E.</creatorcontrib><creatorcontrib>Hilliard, Jitka</creatorcontrib><creatorcontrib>Ni, Yinan</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilliard, Jimmy E.</au><au>Hilliard, Jitka</au><au>Ni, Yinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities</atitle><jtitle>Quantitative finance</jtitle><date>2021</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>125</spage><epage>142</epage><pages>125-142</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black-Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2020.1773519</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2021, Vol.21 (1), p.125-142 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_proquest_journals_2470588425 |
source | Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | Arbitrage Hedge ratios Implied parameters Interest rates Practitioner Black-Scholes Short-lived arbitrage |
title | Using the short-lived arbitrage model to compute minimum variance hedge ratios: application to indices, stocks and commodities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20short-lived%20arbitrage%20model%20to%20compute%20minimum%20variance%20hedge%20ratios:%20application%20to%20indices,%20stocks%20and%20commodities&rft.jtitle=Quantitative%20finance&rft.au=Hilliard,%20Jimmy%20E.&rft.date=2021&rft.volume=21&rft.issue=1&rft.spage=125&rft.epage=142&rft.pages=125-142&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2020.1773519&rft_dat=%3Cproquest_econi%3E2470588425%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470588425&rft_id=info:pmid/&rfr_iscdi=true |