Branching laws for classical groups: the non-tempered case

This paper generalizes the Gan–Gross–Prasad (GGP) conjectures that were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the non-generic L-packets arising from Arthur parameters. The paper introduces the key notion of a relevant pair of Arthur par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2020-11, Vol.156 (11), p.2298-2367
Hauptverfasser: Gan, Wee Teck, Gross, Benedict H., Prasad, Dipendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper generalizes the Gan–Gross–Prasad (GGP) conjectures that were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the non-generic L-packets arising from Arthur parameters. The paper introduces the key notion of a relevant pair of Arthur parameters that governs the branching laws for ${{\rm GL}}_n$ and all classical groups over both local fields and global fields. It plays a role for all the branching problems studied in Gan et al. [Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I, Astérisque 346 (2012), 1–109] including Bessel models and Fourier–Jacobi models.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X20007496