Human and Robotic Fish Interaction Controlled Using Hand Gesture Image Processing

This paper is about the control of robotic fish movement in an aquarium via human hand gestures detected by image sensors attached in the aquarium. In this study, sensors actively interact with humans and robotic fish. Image and radio frequency sensors are used to identify the position and color of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2020-10, Vol.32 (10), p.3479
Hauptverfasser: Angani, Amarnathvarma, Lee, Jin-Wook, Talluri, Teressa, Lee, Jae-young, Shin, Kyoo Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 3479
container_title Sensors and materials
container_volume 32
creator Angani, Amarnathvarma
Lee, Jin-Wook
Talluri, Teressa
Lee, Jae-young
Shin, Kyoo Jae
description This paper is about the control of robotic fish movement in an aquarium via human hand gestures detected by image sensors attached in the aquarium. In this study, sensors actively interact with humans and robotic fish. Image and radio frequency sensors are used to identify the position and color of robotic fish. Recently, we have studied human interactive control based on hand gesture recognition. Image sensors send the input signals of hand gestures obtained from real-time video images processed using tracking control algorithms, such as color mark, stop zone, and lead-lag tracking algorithms, to robotic fish. The movement of robotic fish is controlled via the movement of the two hands, where the left hand is for the fish to be controlled and the right hand is for controlling the movement of the robotic fish. Hand gesture recognition consists of hand feature segmentation and gesture recognition from the hand features. Our results show that interactive human control using hand gestures successfully controls the movement of robotic fish.
doi_str_mv 10.18494/SAM.2020.2925
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2470381010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470381010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-44d7c52469c36be334044050ad1650cff7104d7ed20c657bb50ba092a7741b813</originalsourceid><addsrcrecordid>eNotkDtvwjAUhT20UhFl7Wypc9LrV5yMCBUSiapPZstxHBoENrWTof--CXS6w_l0ztWH0AOBlOS84E-fy5eUAoWUFlTcoBkUhCe8YOIOLWI8AADJBWQ0m6H3cjhph7Vr8Ievfd8ZvO7iN65cb4M2fecdXnnXB3882gbvYuf2uJzwjY39ECyuTnpv8VvwxsYpvUe3rT5Gu_i_c7RbP3-tymT7uqlWy21imGR9wnkjjaA8KwzLassYB85BgG5IJsC0rSQwIrahYDIh61pAraGgWkpO6pywOXq89p6D_xnGZ9TBD8GNk4pyCSwnQGCk0itlgo8x2FadQ3fS4VcRUBdbarSlJltqssX-AB7hXQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470381010</pqid></control><display><type>article</type><title>Human and Robotic Fish Interaction Controlled Using Hand Gesture Image Processing</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Angani, Amarnathvarma ; Lee, Jin-Wook ; Talluri, Teressa ; Lee, Jae-young ; Shin, Kyoo Jae</creator><creatorcontrib>Angani, Amarnathvarma ; Lee, Jin-Wook ; Talluri, Teressa ; Lee, Jae-young ; Shin, Kyoo Jae</creatorcontrib><description>This paper is about the control of robotic fish movement in an aquarium via human hand gestures detected by image sensors attached in the aquarium. In this study, sensors actively interact with humans and robotic fish. Image and radio frequency sensors are used to identify the position and color of robotic fish. Recently, we have studied human interactive control based on hand gesture recognition. Image sensors send the input signals of hand gestures obtained from real-time video images processed using tracking control algorithms, such as color mark, stop zone, and lead-lag tracking algorithms, to robotic fish. The movement of robotic fish is controlled via the movement of the two hands, where the left hand is for the fish to be controlled and the right hand is for controlling the movement of the robotic fish. Hand gesture recognition consists of hand feature segmentation and gesture recognition from the hand features. Our results show that interactive human control using hand gestures successfully controls the movement of robotic fish.</description><identifier>ISSN: 0914-4935</identifier><identifier>DOI: 10.18494/SAM.2020.2925</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Algorithms ; Color ; Control algorithms ; Feature recognition ; Fish ; Gesture recognition ; Human motion ; Image processing ; Image segmentation ; Interactive control ; Object recognition ; Position sensing ; Robot control ; Robotics ; Sensors ; Signal processing ; Tracking control</subject><ispartof>Sensors and materials, 2020-10, Vol.32 (10), p.3479</ispartof><rights>Copyright MYU Scientific Publishing Division 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-44d7c52469c36be334044050ad1650cff7104d7ed20c657bb50ba092a7741b813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Angani, Amarnathvarma</creatorcontrib><creatorcontrib>Lee, Jin-Wook</creatorcontrib><creatorcontrib>Talluri, Teressa</creatorcontrib><creatorcontrib>Lee, Jae-young</creatorcontrib><creatorcontrib>Shin, Kyoo Jae</creatorcontrib><title>Human and Robotic Fish Interaction Controlled Using Hand Gesture Image Processing</title><title>Sensors and materials</title><description>This paper is about the control of robotic fish movement in an aquarium via human hand gestures detected by image sensors attached in the aquarium. In this study, sensors actively interact with humans and robotic fish. Image and radio frequency sensors are used to identify the position and color of robotic fish. Recently, we have studied human interactive control based on hand gesture recognition. Image sensors send the input signals of hand gestures obtained from real-time video images processed using tracking control algorithms, such as color mark, stop zone, and lead-lag tracking algorithms, to robotic fish. The movement of robotic fish is controlled via the movement of the two hands, where the left hand is for the fish to be controlled and the right hand is for controlling the movement of the robotic fish. Hand gesture recognition consists of hand feature segmentation and gesture recognition from the hand features. Our results show that interactive human control using hand gestures successfully controls the movement of robotic fish.</description><subject>Algorithms</subject><subject>Color</subject><subject>Control algorithms</subject><subject>Feature recognition</subject><subject>Fish</subject><subject>Gesture recognition</subject><subject>Human motion</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Interactive control</subject><subject>Object recognition</subject><subject>Position sensing</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Tracking control</subject><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkDtvwjAUhT20UhFl7Wypc9LrV5yMCBUSiapPZstxHBoENrWTof--CXS6w_l0ztWH0AOBlOS84E-fy5eUAoWUFlTcoBkUhCe8YOIOLWI8AADJBWQ0m6H3cjhph7Vr8Ievfd8ZvO7iN65cb4M2fecdXnnXB3882gbvYuf2uJzwjY39ECyuTnpv8VvwxsYpvUe3rT5Gu_i_c7RbP3-tymT7uqlWy21imGR9wnkjjaA8KwzLassYB85BgG5IJsC0rSQwIrahYDIh61pAraGgWkpO6pywOXq89p6D_xnGZ9TBD8GNk4pyCSwnQGCk0itlgo8x2FadQ3fS4VcRUBdbarSlJltqssX-AB7hXQY</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Angani, Amarnathvarma</creator><creator>Lee, Jin-Wook</creator><creator>Talluri, Teressa</creator><creator>Lee, Jae-young</creator><creator>Shin, Kyoo Jae</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20201030</creationdate><title>Human and Robotic Fish Interaction Controlled Using Hand Gesture Image Processing</title><author>Angani, Amarnathvarma ; Lee, Jin-Wook ; Talluri, Teressa ; Lee, Jae-young ; Shin, Kyoo Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-44d7c52469c36be334044050ad1650cff7104d7ed20c657bb50ba092a7741b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Control algorithms</topic><topic>Feature recognition</topic><topic>Fish</topic><topic>Gesture recognition</topic><topic>Human motion</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Interactive control</topic><topic>Object recognition</topic><topic>Position sensing</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angani, Amarnathvarma</creatorcontrib><creatorcontrib>Lee, Jin-Wook</creatorcontrib><creatorcontrib>Talluri, Teressa</creatorcontrib><creatorcontrib>Lee, Jae-young</creatorcontrib><creatorcontrib>Shin, Kyoo Jae</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angani, Amarnathvarma</au><au>Lee, Jin-Wook</au><au>Talluri, Teressa</au><au>Lee, Jae-young</au><au>Shin, Kyoo Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human and Robotic Fish Interaction Controlled Using Hand Gesture Image Processing</atitle><jtitle>Sensors and materials</jtitle><date>2020-10-30</date><risdate>2020</risdate><volume>32</volume><issue>10</issue><spage>3479</spage><pages>3479-</pages><issn>0914-4935</issn><abstract>This paper is about the control of robotic fish movement in an aquarium via human hand gestures detected by image sensors attached in the aquarium. In this study, sensors actively interact with humans and robotic fish. Image and radio frequency sensors are used to identify the position and color of robotic fish. Recently, we have studied human interactive control based on hand gesture recognition. Image sensors send the input signals of hand gestures obtained from real-time video images processed using tracking control algorithms, such as color mark, stop zone, and lead-lag tracking algorithms, to robotic fish. The movement of robotic fish is controlled via the movement of the two hands, where the left hand is for the fish to be controlled and the right hand is for controlling the movement of the robotic fish. Hand gesture recognition consists of hand feature segmentation and gesture recognition from the hand features. Our results show that interactive human control using hand gestures successfully controls the movement of robotic fish.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2020.2925</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2020-10, Vol.32 (10), p.3479
issn 0914-4935
language eng
recordid cdi_proquest_journals_2470381010
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Color
Control algorithms
Feature recognition
Fish
Gesture recognition
Human motion
Image processing
Image segmentation
Interactive control
Object recognition
Position sensing
Robot control
Robotics
Sensors
Signal processing
Tracking control
title Human and Robotic Fish Interaction Controlled Using Hand Gesture Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20and%20Robotic%20Fish%20Interaction%20Controlled%20Using%20Hand%20Gesture%20Image%20Processing&rft.jtitle=Sensors%20and%20materials&rft.au=Angani,%20Amarnathvarma&rft.date=2020-10-30&rft.volume=32&rft.issue=10&rft.spage=3479&rft.pages=3479-&rft.issn=0914-4935&rft_id=info:doi/10.18494/SAM.2020.2925&rft_dat=%3Cproquest_cross%3E2470381010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470381010&rft_id=info:pmid/&rfr_iscdi=true