Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway

Small, rocky planets have been found orbiting in extreme proximity to their host stars, sometimes down to only ∼2 stellar radii. These ultra-short-period planets (USPs) likely did not form in their present-day orbits, but rather migrated from larger initial separations. While tides are the probable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-12, Vol.905 (1), p.71
Hauptverfasser: Millholland, Sarah C., Spalding, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 71
container_title The Astrophysical journal
container_volume 905
creator Millholland, Sarah C.
Spalding, Christopher
description Small, rocky planets have been found orbiting in extreme proximity to their host stars, sometimes down to only ∼2 stellar radii. These ultra-short-period planets (USPs) likely did not form in their present-day orbits, but rather migrated from larger initial separations. While tides are the probable cause of this migration, the tidal source has remained uncertain. Here, we introduce planetary obliquity tides as a natural pathway for the production of USPs within close-in multiplanet systems. The crucial idea is that tidal dissipation generally forces planetary spin vectors to equilibrium configurations called "Cassini states," in which the planetary obliquities (axial tilts) are nonzero. In these cases, sustained tidal dissipation and inward orbital migration are inevitable. Migration then increases the obliquity and strengthens the tides, creating a positive feedback loop. Thus, if a planet's initial semimajor axis is small enough (a 0.05 au), it can experience runaway orbital decay, which is stalled at ultra-short orbital periods when the forced obliquity reaches very high values (∼85°) and becomes unstable. We use secular dynamics to outline the parameter space in which the innermost member of a prototypical Kepler multiple-planet system can become a USP. We find that these conditions are consistent with many observed features of USPs, such as period ratios, mutual inclinations, and occurrence rate trends with stellar type. Future detections of stellar obliquities and close-in companions, together with theoretical explorations of the potential for chaotic obliquity dynamics, can help constrain the prevalence of this mechanism.
doi_str_mv 10.3847/1538-4357/abc4e5
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2470049666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470049666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-3568f64ed8f260040cb353f4f463b3ce3675c71bb46fdcc8d6d3c56adfb5febc3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb3LgNuHTvpPJIupVgtFCrSgrthnjglzaQzEyX_3oSIrlxd7uWccw8fALc5esAlKWY5xSUkmBYzIRUx9AxMfk_nYIIQIpDh4v0SXMV4GNb5YjEB65UPR5GcrzNvs32VgoDxw4cEGxOc19lrJWqTYia7bCsrd2pd6qAO7tPU2c5pUWVvbS2-RHcNLqyoorn5mVOwXz3tli9ws31eLx83UJGcJYgpKy0jRpd2zvoWSElMsSWWMCyxMpgVVBW5lIRZrVSpmcaKMqGtpNZIhafgbsxtgj-1JiZ-8G2o-5d8Too-ccEY61VoVKngYwzG8ia4owgdzxEfgPGBDh_o8BFYb7kfLc43f5n_yr8Bl7xtlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470049666</pqid></control><display><type>article</type><title>Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway</title><source>Institute of Physics Open Access Journal Titles</source><creator>Millholland, Sarah C. ; Spalding, Christopher</creator><creatorcontrib>Millholland, Sarah C. ; Spalding, Christopher</creatorcontrib><description>Small, rocky planets have been found orbiting in extreme proximity to their host stars, sometimes down to only ∼2 stellar radii. These ultra-short-period planets (USPs) likely did not form in their present-day orbits, but rather migrated from larger initial separations. While tides are the probable cause of this migration, the tidal source has remained uncertain. Here, we introduce planetary obliquity tides as a natural pathway for the production of USPs within close-in multiplanet systems. The crucial idea is that tidal dissipation generally forces planetary spin vectors to equilibrium configurations called "Cassini states," in which the planetary obliquities (axial tilts) are nonzero. In these cases, sustained tidal dissipation and inward orbital migration are inevitable. Migration then increases the obliquity and strengthens the tides, creating a positive feedback loop. Thus, if a planet's initial semimajor axis is small enough (a 0.05 au), it can experience runaway orbital decay, which is stalled at ultra-short orbital periods when the forced obliquity reaches very high values (∼85°) and becomes unstable. We use secular dynamics to outline the parameter space in which the innermost member of a prototypical Kepler multiple-planet system can become a USP. We find that these conditions are consistent with many observed features of USPs, such as period ratios, mutual inclinations, and occurrence rate trends with stellar type. Future detections of stellar obliquities and close-in companions, together with theoretical explorations of the potential for chaotic obliquity dynamics, can help constrain the prevalence of this mechanism.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abc4e5</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Exoplanet dynamics ; Exoplanet formation ; Exoplanet tides ; Exoplanets ; Extrasolar rocky planets ; Feedback loops ; Obliquity ; Orbit decay ; Orbits ; Planet formation ; Planetary rotation ; Planetary systems ; Planets ; Positive feedback ; Super Earths ; Terrestrial planets ; Tides</subject><ispartof>The Astrophysical journal, 2020-12, Vol.905 (1), p.71</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-3568f64ed8f260040cb353f4f463b3ce3675c71bb46fdcc8d6d3c56adfb5febc3</citedby><cites>FETCH-LOGICAL-c416t-3568f64ed8f260040cb353f4f463b3ce3675c71bb46fdcc8d6d3c56adfb5febc3</cites><orcidid>0000-0001-9052-3400 ; 0000-0003-3130-2282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc4e5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc4e5$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Millholland, Sarah C.</creatorcontrib><creatorcontrib>Spalding, Christopher</creatorcontrib><title>Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Small, rocky planets have been found orbiting in extreme proximity to their host stars, sometimes down to only ∼2 stellar radii. These ultra-short-period planets (USPs) likely did not form in their present-day orbits, but rather migrated from larger initial separations. While tides are the probable cause of this migration, the tidal source has remained uncertain. Here, we introduce planetary obliquity tides as a natural pathway for the production of USPs within close-in multiplanet systems. The crucial idea is that tidal dissipation generally forces planetary spin vectors to equilibrium configurations called "Cassini states," in which the planetary obliquities (axial tilts) are nonzero. In these cases, sustained tidal dissipation and inward orbital migration are inevitable. Migration then increases the obliquity and strengthens the tides, creating a positive feedback loop. Thus, if a planet's initial semimajor axis is small enough (a 0.05 au), it can experience runaway orbital decay, which is stalled at ultra-short orbital periods when the forced obliquity reaches very high values (∼85°) and becomes unstable. We use secular dynamics to outline the parameter space in which the innermost member of a prototypical Kepler multiple-planet system can become a USP. We find that these conditions are consistent with many observed features of USPs, such as period ratios, mutual inclinations, and occurrence rate trends with stellar type. Future detections of stellar obliquities and close-in companions, together with theoretical explorations of the potential for chaotic obliquity dynamics, can help constrain the prevalence of this mechanism.</description><subject>Astrophysics</subject><subject>Exoplanet dynamics</subject><subject>Exoplanet formation</subject><subject>Exoplanet tides</subject><subject>Exoplanets</subject><subject>Extrasolar rocky planets</subject><subject>Feedback loops</subject><subject>Obliquity</subject><subject>Orbit decay</subject><subject>Orbits</subject><subject>Planet formation</subject><subject>Planetary rotation</subject><subject>Planetary systems</subject><subject>Planets</subject><subject>Positive feedback</subject><subject>Super Earths</subject><subject>Terrestrial planets</subject><subject>Tides</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFb3LgNuHTvpPJIupVgtFCrSgrthnjglzaQzEyX_3oSIrlxd7uWccw8fALc5esAlKWY5xSUkmBYzIRUx9AxMfk_nYIIQIpDh4v0SXMV4GNb5YjEB65UPR5GcrzNvs32VgoDxw4cEGxOc19lrJWqTYia7bCsrd2pd6qAO7tPU2c5pUWVvbS2-RHcNLqyoorn5mVOwXz3tli9ws31eLx83UJGcJYgpKy0jRpd2zvoWSElMsSWWMCyxMpgVVBW5lIRZrVSpmcaKMqGtpNZIhafgbsxtgj-1JiZ-8G2o-5d8Too-ccEY61VoVKngYwzG8ia4owgdzxEfgPGBDh_o8BFYb7kfLc43f5n_yr8Bl7xtlg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Millholland, Sarah C.</creator><creator>Spalding, Christopher</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9052-3400</orcidid><orcidid>https://orcid.org/0000-0003-3130-2282</orcidid></search><sort><creationdate>20201201</creationdate><title>Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway</title><author>Millholland, Sarah C. ; Spalding, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-3568f64ed8f260040cb353f4f463b3ce3675c71bb46fdcc8d6d3c56adfb5febc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Exoplanet dynamics</topic><topic>Exoplanet formation</topic><topic>Exoplanet tides</topic><topic>Exoplanets</topic><topic>Extrasolar rocky planets</topic><topic>Feedback loops</topic><topic>Obliquity</topic><topic>Orbit decay</topic><topic>Orbits</topic><topic>Planet formation</topic><topic>Planetary rotation</topic><topic>Planetary systems</topic><topic>Planets</topic><topic>Positive feedback</topic><topic>Super Earths</topic><topic>Terrestrial planets</topic><topic>Tides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millholland, Sarah C.</creatorcontrib><creatorcontrib>Spalding, Christopher</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Millholland, Sarah C.</au><au>Spalding, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>905</volume><issue>1</issue><spage>71</spage><pages>71-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Small, rocky planets have been found orbiting in extreme proximity to their host stars, sometimes down to only ∼2 stellar radii. These ultra-short-period planets (USPs) likely did not form in their present-day orbits, but rather migrated from larger initial separations. While tides are the probable cause of this migration, the tidal source has remained uncertain. Here, we introduce planetary obliquity tides as a natural pathway for the production of USPs within close-in multiplanet systems. The crucial idea is that tidal dissipation generally forces planetary spin vectors to equilibrium configurations called "Cassini states," in which the planetary obliquities (axial tilts) are nonzero. In these cases, sustained tidal dissipation and inward orbital migration are inevitable. Migration then increases the obliquity and strengthens the tides, creating a positive feedback loop. Thus, if a planet's initial semimajor axis is small enough (a 0.05 au), it can experience runaway orbital decay, which is stalled at ultra-short orbital periods when the forced obliquity reaches very high values (∼85°) and becomes unstable. We use secular dynamics to outline the parameter space in which the innermost member of a prototypical Kepler multiple-planet system can become a USP. We find that these conditions are consistent with many observed features of USPs, such as period ratios, mutual inclinations, and occurrence rate trends with stellar type. Future detections of stellar obliquities and close-in companions, together with theoretical explorations of the potential for chaotic obliquity dynamics, can help constrain the prevalence of this mechanism.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abc4e5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9052-3400</orcidid><orcidid>https://orcid.org/0000-0003-3130-2282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-12, Vol.905 (1), p.71
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2470049666
source Institute of Physics Open Access Journal Titles
subjects Astrophysics
Exoplanet dynamics
Exoplanet formation
Exoplanet tides
Exoplanets
Extrasolar rocky planets
Feedback loops
Obliquity
Orbit decay
Orbits
Planet formation
Planetary rotation
Planetary systems
Planets
Positive feedback
Super Earths
Terrestrial planets
Tides
title Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Ultra-short-period%20Planets%20by%20Obliquity-driven%20Tidal%20Runaway&rft.jtitle=The%20Astrophysical%20journal&rft.au=Millholland,%20Sarah%20C.&rft.date=2020-12-01&rft.volume=905&rft.issue=1&rft.spage=71&rft.pages=71-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abc4e5&rft_dat=%3Cproquest_O3W%3E2470049666%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470049666&rft_id=info:pmid/&rfr_iscdi=true