Robust energy preserving embedding for multi-view subspace clustering
With the increasing popularity of multi-view data, multi-view subspace clustering (MVSC) has attracted intensive attention. However, the curse of dimensionality of the high-dimensional multi-view data constantly obsesses the development of multi-view method. Together with the curse of dimensionality...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2020-12, Vol.210, p.106489, Article 106489 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106489 |
container_title | Knowledge-based systems |
container_volume | 210 |
creator | Li, Haoran Ren, Zhenwen Mukherjee, Mithun Huang, Yuqing Sun, Quansen Li, Xingfeng Chen, Liwan |
description | With the increasing popularity of multi-view data, multi-view subspace clustering (MVSC) has attracted intensive attention. However, the curse of dimensionality of the high-dimensional multi-view data constantly obsesses the development of multi-view method. Together with the curse of dimensionality, the existence of noise and outliers further obstructs the ability of MVSC to exploit the underlying subspace structure. To solve these challenging problems, in this paper, we propose a novel MVSC method, namely robust energy preserving embedding (REPE), which aims to exploit the underlying subspace structure of multi-view data through energy preserving embedding projection and low-rank constraint. In a different manner than before, we use dictionary learning to integrate self-expressiveness learning and embedded subspace learning together, ensure the preservation of energy by restoring the data in embedding space to the original space. Moreover, Schatten p-norm is introduced to better approximate the low-rank constraint. So that we can reduce the dimension of the data while maintain the major energy of the original view data. Thereby, a high quality affinity graph can be learned, such that the promising clustering results can subsequently be obtained. Extensive experiments on five benchmarks have validated the effectiveness of the proposed method, by comparing it with the state of arts. |
doi_str_mv | 10.1016/j.knosys.2020.106489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2470032764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120306183</els_id><sourcerecordid>2470032764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7b9ada7efd418dc966677563ac515ffc7cebe4f205ea011dbc0c69350bffe5813</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4KnrtO0ny0F0GW9QMWBNFzaJPJkrrb1qRd2f_elnr2NMPw3hvej5BbCisKVN7Xq6-mjae4YsCmk-R5cUYWNFcsVRyKc7KAQkCqQNBLchVjDQCM0XxBNu9tNcQ-wQbD7pR0ASOGo292CR4qtHbaXBuSw7DvfXr0-JPEoYpdaTAx-9GJYZRckwtX7iPe_M0l-XzafKxf0u3b8-v6cZuaLON9qqqitKVCZznNrSmklEoJmZVGUOGcUQYr5I6BwBIotZUBI4tMQOUcipxmS3I353ah_R4w9rpuh9CMLzXjCiBjSvJRxWeVCW2MAZ3ugj-U4aQp6AmYrvUMTE_A9AxstD3MNhwbjE2DjsZjY9D6gKbXtvX_B_wCDP93hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470032764</pqid></control><display><type>article</type><title>Robust energy preserving embedding for multi-view subspace clustering</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Haoran ; Ren, Zhenwen ; Mukherjee, Mithun ; Huang, Yuqing ; Sun, Quansen ; Li, Xingfeng ; Chen, Liwan</creator><creatorcontrib>Li, Haoran ; Ren, Zhenwen ; Mukherjee, Mithun ; Huang, Yuqing ; Sun, Quansen ; Li, Xingfeng ; Chen, Liwan</creatorcontrib><description>With the increasing popularity of multi-view data, multi-view subspace clustering (MVSC) has attracted intensive attention. However, the curse of dimensionality of the high-dimensional multi-view data constantly obsesses the development of multi-view method. Together with the curse of dimensionality, the existence of noise and outliers further obstructs the ability of MVSC to exploit the underlying subspace structure. To solve these challenging problems, in this paper, we propose a novel MVSC method, namely robust energy preserving embedding (REPE), which aims to exploit the underlying subspace structure of multi-view data through energy preserving embedding projection and low-rank constraint. In a different manner than before, we use dictionary learning to integrate self-expressiveness learning and embedded subspace learning together, ensure the preservation of energy by restoring the data in embedding space to the original space. Moreover, Schatten p-norm is introduced to better approximate the low-rank constraint. So that we can reduce the dimension of the data while maintain the major energy of the original view data. Thereby, a high quality affinity graph can be learned, such that the promising clustering results can subsequently be obtained. Extensive experiments on five benchmarks have validated the effectiveness of the proposed method, by comparing it with the state of arts.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.106489</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Embedding ; Energy-preserving ; Learning ; Multi-view clustering ; Noise removal ; Outliers (statistics) ; Robustness ; Schatten [formula omitted]-norm ; Subspace learning ; Subspaces</subject><ispartof>Knowledge-based systems, 2020-12, Vol.210, p.106489, Article 106489</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 27, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7b9ada7efd418dc966677563ac515ffc7cebe4f205ea011dbc0c69350bffe5813</citedby><cites>FETCH-LOGICAL-c334t-7b9ada7efd418dc966677563ac515ffc7cebe4f205ea011dbc0c69350bffe5813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2020.106489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Li, Haoran</creatorcontrib><creatorcontrib>Ren, Zhenwen</creatorcontrib><creatorcontrib>Mukherjee, Mithun</creatorcontrib><creatorcontrib>Huang, Yuqing</creatorcontrib><creatorcontrib>Sun, Quansen</creatorcontrib><creatorcontrib>Li, Xingfeng</creatorcontrib><creatorcontrib>Chen, Liwan</creatorcontrib><title>Robust energy preserving embedding for multi-view subspace clustering</title><title>Knowledge-based systems</title><description>With the increasing popularity of multi-view data, multi-view subspace clustering (MVSC) has attracted intensive attention. However, the curse of dimensionality of the high-dimensional multi-view data constantly obsesses the development of multi-view method. Together with the curse of dimensionality, the existence of noise and outliers further obstructs the ability of MVSC to exploit the underlying subspace structure. To solve these challenging problems, in this paper, we propose a novel MVSC method, namely robust energy preserving embedding (REPE), which aims to exploit the underlying subspace structure of multi-view data through energy preserving embedding projection and low-rank constraint. In a different manner than before, we use dictionary learning to integrate self-expressiveness learning and embedded subspace learning together, ensure the preservation of energy by restoring the data in embedding space to the original space. Moreover, Schatten p-norm is introduced to better approximate the low-rank constraint. So that we can reduce the dimension of the data while maintain the major energy of the original view data. Thereby, a high quality affinity graph can be learned, such that the promising clustering results can subsequently be obtained. Extensive experiments on five benchmarks have validated the effectiveness of the proposed method, by comparing it with the state of arts.</description><subject>Clustering</subject><subject>Embedding</subject><subject>Energy-preserving</subject><subject>Learning</subject><subject>Multi-view clustering</subject><subject>Noise removal</subject><subject>Outliers (statistics)</subject><subject>Robustness</subject><subject>Schatten [formula omitted]-norm</subject><subject>Subspace learning</subject><subject>Subspaces</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4KnrtO0ny0F0GW9QMWBNFzaJPJkrrb1qRd2f_elnr2NMPw3hvej5BbCisKVN7Xq6-mjae4YsCmk-R5cUYWNFcsVRyKc7KAQkCqQNBLchVjDQCM0XxBNu9tNcQ-wQbD7pR0ASOGo292CR4qtHbaXBuSw7DvfXr0-JPEoYpdaTAx-9GJYZRckwtX7iPe_M0l-XzafKxf0u3b8-v6cZuaLON9qqqitKVCZznNrSmklEoJmZVGUOGcUQYr5I6BwBIotZUBI4tMQOUcipxmS3I353ah_R4w9rpuh9CMLzXjCiBjSvJRxWeVCW2MAZ3ugj-U4aQp6AmYrvUMTE_A9AxstD3MNhwbjE2DjsZjY9D6gKbXtvX_B_wCDP93hA</recordid><startdate>20201227</startdate><enddate>20201227</enddate><creator>Li, Haoran</creator><creator>Ren, Zhenwen</creator><creator>Mukherjee, Mithun</creator><creator>Huang, Yuqing</creator><creator>Sun, Quansen</creator><creator>Li, Xingfeng</creator><creator>Chen, Liwan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201227</creationdate><title>Robust energy preserving embedding for multi-view subspace clustering</title><author>Li, Haoran ; Ren, Zhenwen ; Mukherjee, Mithun ; Huang, Yuqing ; Sun, Quansen ; Li, Xingfeng ; Chen, Liwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7b9ada7efd418dc966677563ac515ffc7cebe4f205ea011dbc0c69350bffe5813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Embedding</topic><topic>Energy-preserving</topic><topic>Learning</topic><topic>Multi-view clustering</topic><topic>Noise removal</topic><topic>Outliers (statistics)</topic><topic>Robustness</topic><topic>Schatten [formula omitted]-norm</topic><topic>Subspace learning</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haoran</creatorcontrib><creatorcontrib>Ren, Zhenwen</creatorcontrib><creatorcontrib>Mukherjee, Mithun</creatorcontrib><creatorcontrib>Huang, Yuqing</creatorcontrib><creatorcontrib>Sun, Quansen</creatorcontrib><creatorcontrib>Li, Xingfeng</creatorcontrib><creatorcontrib>Chen, Liwan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haoran</au><au>Ren, Zhenwen</au><au>Mukherjee, Mithun</au><au>Huang, Yuqing</au><au>Sun, Quansen</au><au>Li, Xingfeng</au><au>Chen, Liwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust energy preserving embedding for multi-view subspace clustering</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-12-27</date><risdate>2020</risdate><volume>210</volume><spage>106489</spage><pages>106489-</pages><artnum>106489</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>With the increasing popularity of multi-view data, multi-view subspace clustering (MVSC) has attracted intensive attention. However, the curse of dimensionality of the high-dimensional multi-view data constantly obsesses the development of multi-view method. Together with the curse of dimensionality, the existence of noise and outliers further obstructs the ability of MVSC to exploit the underlying subspace structure. To solve these challenging problems, in this paper, we propose a novel MVSC method, namely robust energy preserving embedding (REPE), which aims to exploit the underlying subspace structure of multi-view data through energy preserving embedding projection and low-rank constraint. In a different manner than before, we use dictionary learning to integrate self-expressiveness learning and embedded subspace learning together, ensure the preservation of energy by restoring the data in embedding space to the original space. Moreover, Schatten p-norm is introduced to better approximate the low-rank constraint. So that we can reduce the dimension of the data while maintain the major energy of the original view data. Thereby, a high quality affinity graph can be learned, such that the promising clustering results can subsequently be obtained. Extensive experiments on five benchmarks have validated the effectiveness of the proposed method, by comparing it with the state of arts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.106489</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2020-12, Vol.210, p.106489, Article 106489 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2470032764 |
source | Access via ScienceDirect (Elsevier) |
subjects | Clustering Embedding Energy-preserving Learning Multi-view clustering Noise removal Outliers (statistics) Robustness Schatten [formula omitted]-norm Subspace learning Subspaces |
title | Robust energy preserving embedding for multi-view subspace clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20energy%20preserving%20embedding%20for%20multi-view%20subspace%20clustering&rft.jtitle=Knowledge-based%20systems&rft.au=Li,%20Haoran&rft.date=2020-12-27&rft.volume=210&rft.spage=106489&rft.pages=106489-&rft.artnum=106489&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.106489&rft_dat=%3Cproquest_cross%3E2470032764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470032764&rft_id=info:pmid/&rft_els_id=S0950705120306183&rfr_iscdi=true |