Numerical modelling of thin anisotropic membrane under dynamic load

This work aims to describe a mathematical model and a numerical method to simulate a thin anisotropic membrane moving and deforming in 3D space under a dynamic load of an arbitrary time and space profile. The anisotropic continuum medium model described in the article can be used to model a membrane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aeronautical journal 2021-01, Vol.125 (1283), p.109-126
Hauptverfasser: Aksenov, V.V., Vasyukov, A.V., Petrov, I.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 1283
container_start_page 109
container_title Aeronautical journal
container_volume 125
creator Aksenov, V.V.
Vasyukov, A.V.
Petrov, I.B.
description This work aims to describe a mathematical model and a numerical method to simulate a thin anisotropic membrane moving and deforming in 3D space under a dynamic load of an arbitrary time and space profile. The anisotropic continuum medium model described in the article can be used to model a membrane made of composite material using its effective elastic parameters. The model and the method allow the consideration of problems when the quasi-static approximation is not valid and elastic waves caused by the impact should be calculated. The model and the method can be used for numerical study of different processes in thin composite layers, such as shock load, ultrasound propagation, non-destructive testing procedures and vibrations. The thin membrane is considered as a 2D object in 3D space, an approach that allows a reduction in the computational time compared with full 3D models, while still having an arbitrary material rheology and load profile.
doi_str_mv 10.1017/aer.2020.61
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469993858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_aer_2020_61</cupid><sourcerecordid>2469993858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b097e081da942af231129143a47c923ccc7d1e3e07a9c7821b28504a89e5937a3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsr_0DApUy9ecxkspTiC4pudB1uk0xNmZnUZGbRf--UFty4unD4OIf7EXLLYMGAqQf0acGBw6JiZ2TGodRFJSt5TmYAwArNJVySq5y3AAK4lDOyfB87n4LFlnbR-bYN_YbGhg7foafYhxyHFHfB0s5364S9p2PvfKJu32M3xW1Ed00uGmyzvzndOfl6fvpcvharj5e35eOqsLxUQ7EGrTzUzKGWHBsuGOOaSYFSWc2FtVY55oUHhdqqmrM1r0uQWGtfaqFQzMndsXeX4s_o82C2cUz9NGm4rLTWoi7ribo_UjbFnJNvzC6FDtPeMDAHS2ayZA6WTMUmujjROP0X3Mb_lf7H_wJMmGg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469993858</pqid></control><display><type>article</type><title>Numerical modelling of thin anisotropic membrane under dynamic load</title><source>Cambridge University Press Journals Complete</source><creator>Aksenov, V.V. ; Vasyukov, A.V. ; Petrov, I.B.</creator><creatorcontrib>Aksenov, V.V. ; Vasyukov, A.V. ; Petrov, I.B.</creatorcontrib><description>This work aims to describe a mathematical model and a numerical method to simulate a thin anisotropic membrane moving and deforming in 3D space under a dynamic load of an arbitrary time and space profile. The anisotropic continuum medium model described in the article can be used to model a membrane made of composite material using its effective elastic parameters. The model and the method allow the consideration of problems when the quasi-static approximation is not valid and elastic waves caused by the impact should be calculated. The model and the method can be used for numerical study of different processes in thin composite layers, such as shock load, ultrasound propagation, non-destructive testing procedures and vibrations. The thin membrane is considered as a 2D object in 3D space, an approach that allows a reduction in the computational time compared with full 3D models, while still having an arbitrary material rheology and load profile.</description><identifier>ISSN: 0001-9240</identifier><identifier>EISSN: 2059-6464</identifier><identifier>DOI: 10.1017/aer.2020.61</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Composite materials ; Computing time ; Dynamic loads ; Elastic waves ; Mathematical models ; Membranes ; Nondestructive testing ; Numerical analysis ; Numerical methods ; Rheological properties ; Rheology ; Shock loads ; Space stations ; Thin films ; Three dimensional models ; Velocity</subject><ispartof>Aeronautical journal, 2021-01, Vol.125 (1283), p.109-126</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press on behalf of Royal Aeronautical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-b097e081da942af231129143a47c923ccc7d1e3e07a9c7821b28504a89e5937a3</cites><orcidid>0000-0003-4977-101X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001924020000615/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Aksenov, V.V.</creatorcontrib><creatorcontrib>Vasyukov, A.V.</creatorcontrib><creatorcontrib>Petrov, I.B.</creatorcontrib><title>Numerical modelling of thin anisotropic membrane under dynamic load</title><title>Aeronautical journal</title><addtitle>Aeronaut. j</addtitle><description>This work aims to describe a mathematical model and a numerical method to simulate a thin anisotropic membrane moving and deforming in 3D space under a dynamic load of an arbitrary time and space profile. The anisotropic continuum medium model described in the article can be used to model a membrane made of composite material using its effective elastic parameters. The model and the method allow the consideration of problems when the quasi-static approximation is not valid and elastic waves caused by the impact should be calculated. The model and the method can be used for numerical study of different processes in thin composite layers, such as shock load, ultrasound propagation, non-destructive testing procedures and vibrations. The thin membrane is considered as a 2D object in 3D space, an approach that allows a reduction in the computational time compared with full 3D models, while still having an arbitrary material rheology and load profile.</description><subject>Composite materials</subject><subject>Computing time</subject><subject>Dynamic loads</subject><subject>Elastic waves</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Nondestructive testing</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shock loads</subject><subject>Space stations</subject><subject>Thin films</subject><subject>Three dimensional models</subject><subject>Velocity</subject><issn>0001-9240</issn><issn>2059-6464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLAzEUhYMoWKsr_0DApUy9ecxkspTiC4pudB1uk0xNmZnUZGbRf--UFty4unD4OIf7EXLLYMGAqQf0acGBw6JiZ2TGodRFJSt5TmYAwArNJVySq5y3AAK4lDOyfB87n4LFlnbR-bYN_YbGhg7foafYhxyHFHfB0s5364S9p2PvfKJu32M3xW1Ed00uGmyzvzndOfl6fvpcvharj5e35eOqsLxUQ7EGrTzUzKGWHBsuGOOaSYFSWc2FtVY55oUHhdqqmrM1r0uQWGtfaqFQzMndsXeX4s_o82C2cUz9NGm4rLTWoi7ribo_UjbFnJNvzC6FDtPeMDAHS2ayZA6WTMUmujjROP0X3Mb_lf7H_wJMmGg8</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Aksenov, V.V.</creator><creator>Vasyukov, A.V.</creator><creator>Petrov, I.B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4977-101X</orcidid></search><sort><creationdate>202101</creationdate><title>Numerical modelling of thin anisotropic membrane under dynamic load</title><author>Aksenov, V.V. ; Vasyukov, A.V. ; Petrov, I.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b097e081da942af231129143a47c923ccc7d1e3e07a9c7821b28504a89e5937a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Computing time</topic><topic>Dynamic loads</topic><topic>Elastic waves</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Nondestructive testing</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shock loads</topic><topic>Space stations</topic><topic>Thin films</topic><topic>Three dimensional models</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aksenov, V.V.</creatorcontrib><creatorcontrib>Vasyukov, A.V.</creatorcontrib><creatorcontrib>Petrov, I.B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aksenov, V.V.</au><au>Vasyukov, A.V.</au><au>Petrov, I.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modelling of thin anisotropic membrane under dynamic load</atitle><jtitle>Aeronautical journal</jtitle><addtitle>Aeronaut. j</addtitle><date>2021-01</date><risdate>2021</risdate><volume>125</volume><issue>1283</issue><spage>109</spage><epage>126</epage><pages>109-126</pages><issn>0001-9240</issn><eissn>2059-6464</eissn><abstract>This work aims to describe a mathematical model and a numerical method to simulate a thin anisotropic membrane moving and deforming in 3D space under a dynamic load of an arbitrary time and space profile. The anisotropic continuum medium model described in the article can be used to model a membrane made of composite material using its effective elastic parameters. The model and the method allow the consideration of problems when the quasi-static approximation is not valid and elastic waves caused by the impact should be calculated. The model and the method can be used for numerical study of different processes in thin composite layers, such as shock load, ultrasound propagation, non-destructive testing procedures and vibrations. The thin membrane is considered as a 2D object in 3D space, an approach that allows a reduction in the computational time compared with full 3D models, while still having an arbitrary material rheology and load profile.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/aer.2020.61</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4977-101X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-9240
ispartof Aeronautical journal, 2021-01, Vol.125 (1283), p.109-126
issn 0001-9240
2059-6464
language eng
recordid cdi_proquest_journals_2469993858
source Cambridge University Press Journals Complete
subjects Composite materials
Computing time
Dynamic loads
Elastic waves
Mathematical models
Membranes
Nondestructive testing
Numerical analysis
Numerical methods
Rheological properties
Rheology
Shock loads
Space stations
Thin films
Three dimensional models
Velocity
title Numerical modelling of thin anisotropic membrane under dynamic load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modelling%20of%20thin%20anisotropic%20membrane%20under%20dynamic%20load&rft.jtitle=Aeronautical%20journal&rft.au=Aksenov,%20V.V.&rft.date=2021-01&rft.volume=125&rft.issue=1283&rft.spage=109&rft.epage=126&rft.pages=109-126&rft.issn=0001-9240&rft.eissn=2059-6464&rft_id=info:doi/10.1017/aer.2020.61&rft_dat=%3Cproquest_cross%3E2469993858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469993858&rft_id=info:pmid/&rft_cupid=10_1017_aer_2020_61&rfr_iscdi=true