Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors

Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-12, Vol.32 (50), p.e2003245-n/a, Article 2003245
Hauptverfasser: Kumagai, Shohei, Watanabe, Shun, Ishii, Hiroyuki, Isahaya, Nobuaki, Yamamura, Akifumi, Wakimoto, Takahiro, Sato, Hiroyasu, Yamano, Akihito, Okamoto, Toshihiro, Takeya, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2003245
container_title Advanced materials (Weinheim)
container_volume 32
creator Kumagai, Shohei
Watanabe, Shun
Ishii, Hiroyuki
Isahaya, Nobuaki
Yamamura, Akifumi
Wakimoto, Takahiro
Sato, Hiroyasu
Yamano, Akihito
Okamoto, Toshihiro
Takeya, Jun
description Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices. A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.
doi_str_mv 10.1002/adma.202003245
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2469988338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469988338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRS0EYpqBLUtkiQ0SpPEjTsfLKAwPaUaD1MM6cpxK41FiB9sRalYs-AC-kS_BoZtGYgOrslTn3qryRegxJWtKCHupulGtGWGEcJaLO2hFBaNZTqS4i1ZEcpHJIi_P0IMQbgkhsiDFfXTGOZVU5HSFvtXuI3iwEV8MoKN3Ft94ZcPkfMTG4sr4H1-_b6NqB3iB33tjI3R4a-xugNSo_T5ENeBrv1PWaLyF0Whnu1lH57GyHa6maTBaRZOco8NXsFNpYPxyGGNC4sJDdK9XQ4BHx3qOPry-uKnfZpfXb97V1WWmRVGIrONSbDSjrGypLEBDnheil2WrZJkug47mohSi04WWFIqeK65zAj2hQrGNovwcPTv4Tt59miHEZjRBwzAoC24ODcuL5VM3jCf06V_orZu9TdstlJRlyXmZqPWB0t6F4KFvJm9G5fcNJc1i1Sz5NKd8kuDJ0XZuR-hO-O9AEvD8AHyG1vVBG7AaTlhKUJRScMbTiyx0-f90beKvGGo325ik8ig1A-z_sXdTvbqq_lzxE7G8v6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469988338</pqid></control><display><type>article</type><title>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kumagai, Shohei ; Watanabe, Shun ; Ishii, Hiroyuki ; Isahaya, Nobuaki ; Yamamura, Akifumi ; Wakimoto, Takahiro ; Sato, Hiroyasu ; Yamano, Akihito ; Okamoto, Toshihiro ; Takeya, Jun</creator><creatorcontrib>Kumagai, Shohei ; Watanabe, Shun ; Ishii, Hiroyuki ; Isahaya, Nobuaki ; Yamamura, Akifumi ; Wakimoto, Takahiro ; Sato, Hiroyasu ; Yamano, Akihito ; Okamoto, Toshihiro ; Takeya, Jun</creatorcontrib><description>Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices. A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202003245</identifier><identifier>PMID: 33191541</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Carrier transport ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Coherence ; coherent electrons ; Crystal structure ; Crystals ; cutoff frequency ; Electron transport ; Field effect transistors ; Hall effect ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Optoelectronics ; Organic semiconductors ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Semiconductor devices ; Single crystals ; Technology ; Transistors ; Transport properties</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2003245-n/a, Article 2003245</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589532300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</citedby><cites>FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</cites><orcidid>0000-0002-4783-0621 ; 0000-0002-1554-054X ; 0000-0002-7003-1350 ; 0000-0001-7377-6043 ; 0000-0003-0644-1424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202003245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202003245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,28252,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33191541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumagai, Shohei</creatorcontrib><creatorcontrib>Watanabe, Shun</creatorcontrib><creatorcontrib>Ishii, Hiroyuki</creatorcontrib><creatorcontrib>Isahaya, Nobuaki</creatorcontrib><creatorcontrib>Yamamura, Akifumi</creatorcontrib><creatorcontrib>Wakimoto, Takahiro</creatorcontrib><creatorcontrib>Sato, Hiroyasu</creatorcontrib><creatorcontrib>Yamano, Akihito</creatorcontrib><creatorcontrib>Okamoto, Toshihiro</creatorcontrib><creatorcontrib>Takeya, Jun</creatorcontrib><title>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</title><title>Advanced materials (Weinheim)</title><addtitle>ADV MATER</addtitle><addtitle>Adv Mater</addtitle><description>Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices. A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.</description><subject>Carrier transport</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Coherence</subject><subject>coherent electrons</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>cutoff frequency</subject><subject>Electron transport</subject><subject>Field effect transistors</subject><subject>Hall effect</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Optoelectronics</subject><subject>Organic semiconductors</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Technology</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkcuO1DAQRS0EYpqBLUtkiQ0SpPEjTsfLKAwPaUaD1MM6cpxK41FiB9sRalYs-AC-kS_BoZtGYgOrslTn3qryRegxJWtKCHupulGtGWGEcJaLO2hFBaNZTqS4i1ZEcpHJIi_P0IMQbgkhsiDFfXTGOZVU5HSFvtXuI3iwEV8MoKN3Ft94ZcPkfMTG4sr4H1-_b6NqB3iB33tjI3R4a-xugNSo_T5ENeBrv1PWaLyF0Whnu1lH57GyHa6maTBaRZOco8NXsFNpYPxyGGNC4sJDdK9XQ4BHx3qOPry-uKnfZpfXb97V1WWmRVGIrONSbDSjrGypLEBDnheil2WrZJkug47mohSi04WWFIqeK65zAj2hQrGNovwcPTv4Tt59miHEZjRBwzAoC24ODcuL5VM3jCf06V_orZu9TdstlJRlyXmZqPWB0t6F4KFvJm9G5fcNJc1i1Sz5NKd8kuDJ0XZuR-hO-O9AEvD8AHyG1vVBG7AaTlhKUJRScMbTiyx0-f90beKvGGo325ik8ig1A-z_sXdTvbqq_lzxE7G8v6g</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kumagai, Shohei</creator><creator>Watanabe, Shun</creator><creator>Ishii, Hiroyuki</creator><creator>Isahaya, Nobuaki</creator><creator>Yamamura, Akifumi</creator><creator>Wakimoto, Takahiro</creator><creator>Sato, Hiroyasu</creator><creator>Yamano, Akihito</creator><creator>Okamoto, Toshihiro</creator><creator>Takeya, Jun</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4783-0621</orcidid><orcidid>https://orcid.org/0000-0002-1554-054X</orcidid><orcidid>https://orcid.org/0000-0002-7003-1350</orcidid><orcidid>https://orcid.org/0000-0001-7377-6043</orcidid><orcidid>https://orcid.org/0000-0003-0644-1424</orcidid></search><sort><creationdate>20201201</creationdate><title>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</title><author>Kumagai, Shohei ; Watanabe, Shun ; Ishii, Hiroyuki ; Isahaya, Nobuaki ; Yamamura, Akifumi ; Wakimoto, Takahiro ; Sato, Hiroyasu ; Yamano, Akihito ; Okamoto, Toshihiro ; Takeya, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier transport</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Coherence</topic><topic>coherent electrons</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>cutoff frequency</topic><topic>Electron transport</topic><topic>Field effect transistors</topic><topic>Hall effect</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Optoelectronics</topic><topic>Organic semiconductors</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Technology</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumagai, Shohei</creatorcontrib><creatorcontrib>Watanabe, Shun</creatorcontrib><creatorcontrib>Ishii, Hiroyuki</creatorcontrib><creatorcontrib>Isahaya, Nobuaki</creatorcontrib><creatorcontrib>Yamamura, Akifumi</creatorcontrib><creatorcontrib>Wakimoto, Takahiro</creatorcontrib><creatorcontrib>Sato, Hiroyasu</creatorcontrib><creatorcontrib>Yamano, Akihito</creatorcontrib><creatorcontrib>Okamoto, Toshihiro</creatorcontrib><creatorcontrib>Takeya, Jun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumagai, Shohei</au><au>Watanabe, Shun</au><au>Ishii, Hiroyuki</au><au>Isahaya, Nobuaki</au><au>Yamamura, Akifumi</au><au>Wakimoto, Takahiro</au><au>Sato, Hiroyasu</au><au>Yamano, Akihito</au><au>Okamoto, Toshihiro</au><au>Takeya, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><stitle>ADV MATER</stitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>50</issue><spage>e2003245</spage><epage>n/a</epage><pages>e2003245-n/a</pages><artnum>2003245</artnum><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices. A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33191541</pmid><doi>10.1002/adma.202003245</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4783-0621</orcidid><orcidid>https://orcid.org/0000-0002-1554-054X</orcidid><orcidid>https://orcid.org/0000-0002-7003-1350</orcidid><orcidid>https://orcid.org/0000-0001-7377-6043</orcidid><orcidid>https://orcid.org/0000-0003-0644-1424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2003245-n/a, Article 2003245
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2469988338
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Carrier transport
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Coherence
coherent electrons
Crystal structure
Crystals
cutoff frequency
Electron transport
Field effect transistors
Hall effect
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Optoelectronics
Organic semiconductors
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Semiconductor devices
Single crystals
Technology
Transistors
Transport properties
title Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Electron%20Transport%20in%20Air%E2%80%90Stable,%20Printed%20Single%E2%80%90Crystal%20Organic%20Semiconductor%20and%20Application%20to%20Megahertz%20Transistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kumagai,%20Shohei&rft.date=2020-12-01&rft.volume=32&rft.issue=50&rft.spage=e2003245&rft.epage=n/a&rft.pages=e2003245-n/a&rft.artnum=2003245&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202003245&rft_dat=%3Cproquest_webof%3E2469988338%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469988338&rft_id=info:pmid/33191541&rfr_iscdi=true