Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors
Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, s...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-12, Vol.32 (50), p.e2003245-n/a, Article 2003245 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | e2003245 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Kumagai, Shohei Watanabe, Shun Ishii, Hiroyuki Isahaya, Nobuaki Yamamura, Akifumi Wakimoto, Takahiro Sato, Hiroyasu Yamano, Akihito Okamoto, Toshihiro Takeya, Jun |
description | Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices.
A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere. |
doi_str_mv | 10.1002/adma.202003245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2469988338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469988338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRS0EYpqBLUtkiQ0SpPEjTsfLKAwPaUaD1MM6cpxK41FiB9sRalYs-AC-kS_BoZtGYgOrslTn3qryRegxJWtKCHupulGtGWGEcJaLO2hFBaNZTqS4i1ZEcpHJIi_P0IMQbgkhsiDFfXTGOZVU5HSFvtXuI3iwEV8MoKN3Ft94ZcPkfMTG4sr4H1-_b6NqB3iB33tjI3R4a-xugNSo_T5ENeBrv1PWaLyF0Whnu1lH57GyHa6maTBaRZOco8NXsFNpYPxyGGNC4sJDdK9XQ4BHx3qOPry-uKnfZpfXb97V1WWmRVGIrONSbDSjrGypLEBDnheil2WrZJkug47mohSi04WWFIqeK65zAj2hQrGNovwcPTv4Tt59miHEZjRBwzAoC24ODcuL5VM3jCf06V_orZu9TdstlJRlyXmZqPWB0t6F4KFvJm9G5fcNJc1i1Sz5NKd8kuDJ0XZuR-hO-O9AEvD8AHyG1vVBG7AaTlhKUJRScMbTiyx0-f90beKvGGo325ik8ig1A-z_sXdTvbqq_lzxE7G8v6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469988338</pqid></control><display><type>article</type><title>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kumagai, Shohei ; Watanabe, Shun ; Ishii, Hiroyuki ; Isahaya, Nobuaki ; Yamamura, Akifumi ; Wakimoto, Takahiro ; Sato, Hiroyasu ; Yamano, Akihito ; Okamoto, Toshihiro ; Takeya, Jun</creator><creatorcontrib>Kumagai, Shohei ; Watanabe, Shun ; Ishii, Hiroyuki ; Isahaya, Nobuaki ; Yamamura, Akifumi ; Wakimoto, Takahiro ; Sato, Hiroyasu ; Yamano, Akihito ; Okamoto, Toshihiro ; Takeya, Jun</creatorcontrib><description>Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices.
A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202003245</identifier><identifier>PMID: 33191541</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Carrier transport ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Coherence ; coherent electrons ; Crystal structure ; Crystals ; cutoff frequency ; Electron transport ; Field effect transistors ; Hall effect ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Optoelectronics ; Organic semiconductors ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science & Technology ; Science & Technology - Other Topics ; Semiconductor devices ; Single crystals ; Technology ; Transistors ; Transport properties</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2003245-n/a, Article 2003245</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589532300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</citedby><cites>FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</cites><orcidid>0000-0002-4783-0621 ; 0000-0002-1554-054X ; 0000-0002-7003-1350 ; 0000-0001-7377-6043 ; 0000-0003-0644-1424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202003245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202003245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,28252,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33191541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumagai, Shohei</creatorcontrib><creatorcontrib>Watanabe, Shun</creatorcontrib><creatorcontrib>Ishii, Hiroyuki</creatorcontrib><creatorcontrib>Isahaya, Nobuaki</creatorcontrib><creatorcontrib>Yamamura, Akifumi</creatorcontrib><creatorcontrib>Wakimoto, Takahiro</creatorcontrib><creatorcontrib>Sato, Hiroyasu</creatorcontrib><creatorcontrib>Yamano, Akihito</creatorcontrib><creatorcontrib>Okamoto, Toshihiro</creatorcontrib><creatorcontrib>Takeya, Jun</creatorcontrib><title>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</title><title>Advanced materials (Weinheim)</title><addtitle>ADV MATER</addtitle><addtitle>Adv Mater</addtitle><description>Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices.
A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.</description><subject>Carrier transport</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Coherence</subject><subject>coherent electrons</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>cutoff frequency</subject><subject>Electron transport</subject><subject>Field effect transistors</subject><subject>Hall effect</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Optoelectronics</subject><subject>Organic semiconductors</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Technology</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkcuO1DAQRS0EYpqBLUtkiQ0SpPEjTsfLKAwPaUaD1MM6cpxK41FiB9sRalYs-AC-kS_BoZtGYgOrslTn3qryRegxJWtKCHupulGtGWGEcJaLO2hFBaNZTqS4i1ZEcpHJIi_P0IMQbgkhsiDFfXTGOZVU5HSFvtXuI3iwEV8MoKN3Ft94ZcPkfMTG4sr4H1-_b6NqB3iB33tjI3R4a-xugNSo_T5ENeBrv1PWaLyF0Whnu1lH57GyHa6maTBaRZOco8NXsFNpYPxyGGNC4sJDdK9XQ4BHx3qOPry-uKnfZpfXb97V1WWmRVGIrONSbDSjrGypLEBDnheil2WrZJkug47mohSi04WWFIqeK65zAj2hQrGNovwcPTv4Tt59miHEZjRBwzAoC24ODcuL5VM3jCf06V_orZu9TdstlJRlyXmZqPWB0t6F4KFvJm9G5fcNJc1i1Sz5NKd8kuDJ0XZuR-hO-O9AEvD8AHyG1vVBG7AaTlhKUJRScMbTiyx0-f90beKvGGo325ik8ig1A-z_sXdTvbqq_lzxE7G8v6g</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kumagai, Shohei</creator><creator>Watanabe, Shun</creator><creator>Ishii, Hiroyuki</creator><creator>Isahaya, Nobuaki</creator><creator>Yamamura, Akifumi</creator><creator>Wakimoto, Takahiro</creator><creator>Sato, Hiroyasu</creator><creator>Yamano, Akihito</creator><creator>Okamoto, Toshihiro</creator><creator>Takeya, Jun</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4783-0621</orcidid><orcidid>https://orcid.org/0000-0002-1554-054X</orcidid><orcidid>https://orcid.org/0000-0002-7003-1350</orcidid><orcidid>https://orcid.org/0000-0001-7377-6043</orcidid><orcidid>https://orcid.org/0000-0003-0644-1424</orcidid></search><sort><creationdate>20201201</creationdate><title>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</title><author>Kumagai, Shohei ; Watanabe, Shun ; Ishii, Hiroyuki ; Isahaya, Nobuaki ; Yamamura, Akifumi ; Wakimoto, Takahiro ; Sato, Hiroyasu ; Yamano, Akihito ; Okamoto, Toshihiro ; Takeya, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5665-d3957c2128b196ece4465f98ba98096ed145855dc6c91e6f3a3c40ef015a27a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier transport</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Coherence</topic><topic>coherent electrons</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>cutoff frequency</topic><topic>Electron transport</topic><topic>Field effect transistors</topic><topic>Hall effect</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Optoelectronics</topic><topic>Organic semiconductors</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Technology</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumagai, Shohei</creatorcontrib><creatorcontrib>Watanabe, Shun</creatorcontrib><creatorcontrib>Ishii, Hiroyuki</creatorcontrib><creatorcontrib>Isahaya, Nobuaki</creatorcontrib><creatorcontrib>Yamamura, Akifumi</creatorcontrib><creatorcontrib>Wakimoto, Takahiro</creatorcontrib><creatorcontrib>Sato, Hiroyasu</creatorcontrib><creatorcontrib>Yamano, Akihito</creatorcontrib><creatorcontrib>Okamoto, Toshihiro</creatorcontrib><creatorcontrib>Takeya, Jun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumagai, Shohei</au><au>Watanabe, Shun</au><au>Ishii, Hiroyuki</au><au>Isahaya, Nobuaki</au><au>Yamamura, Akifumi</au><au>Wakimoto, Takahiro</au><au>Sato, Hiroyasu</au><au>Yamano, Akihito</au><au>Okamoto, Toshihiro</au><au>Takeya, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><stitle>ADV MATER</stitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>50</issue><spage>e2003245</spage><epage>n/a</epage><pages>e2003245-n/a</pages><artnum>2003245</artnum><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field‐effect transistors (FETs), and coherent (or band‐like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p‐type OSC SCs compatible with a printing technology have been used to achieve high‐speed FETs; therefore, developments of n‐type counterparts may be promising for realizing high‐speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state‐of‐the‐art, air‐stable n‐type OSC, PhC2−BQQDI, by means of variable‐temperature gated Hall effect measurements and X‐ray single‐crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high‐speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2−BQQDI is shown as a new candidate for practical applications of SC‐based, organic complementary devices.
A state‐of‐the‐art n‐type organic semiconductor, PhC2−BQQDI, which can be used to form single‐crystalline thin films by printing, is identified as a band‐transport material by means of variable‐temperature gated Hall effect measurements. The printed PhC2−BQQDI single crystal is also used to demonstrate a high‐frequency transistor with a capability of 4.3 MHz under ambient atmosphere.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33191541</pmid><doi>10.1002/adma.202003245</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4783-0621</orcidid><orcidid>https://orcid.org/0000-0002-1554-054X</orcidid><orcidid>https://orcid.org/0000-0002-7003-1350</orcidid><orcidid>https://orcid.org/0000-0001-7377-6043</orcidid><orcidid>https://orcid.org/0000-0003-0644-1424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2003245-n/a, Article 2003245 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2469988338 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Carrier transport Chemistry Chemistry, Multidisciplinary Chemistry, Physical Coherence coherent electrons Crystal structure Crystals cutoff frequency Electron transport Field effect transistors Hall effect Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Optoelectronics Organic semiconductors Physical Sciences Physics Physics, Applied Physics, Condensed Matter Science & Technology Science & Technology - Other Topics Semiconductor devices Single crystals Technology Transistors Transport properties |
title | Coherent Electron Transport in Air‐Stable, Printed Single‐Crystal Organic Semiconductor and Application to Megahertz Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Electron%20Transport%20in%20Air%E2%80%90Stable,%20Printed%20Single%E2%80%90Crystal%20Organic%20Semiconductor%20and%20Application%20to%20Megahertz%20Transistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kumagai,%20Shohei&rft.date=2020-12-01&rft.volume=32&rft.issue=50&rft.spage=e2003245&rft.epage=n/a&rft.pages=e2003245-n/a&rft.artnum=2003245&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202003245&rft_dat=%3Cproquest_webof%3E2469988338%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469988338&rft_id=info:pmid/33191541&rfr_iscdi=true |