Universal proximity effects in hybrid superconductor–linker molecule–nanoparticle systems: The effect of molecular chirality

The superconductor proximity effect in systems comprising metallic nanoparticles (NPs) and molecules (NP/molecule/superconductor heterostructure) is an intriguing phenomenon that gives rise to important questions, from both fundamental and applicative perspectives, about the nature of Andreev reflec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-12, Vol.117 (24)
Hauptverfasser: Periyasamy, Manimuthu, Bradshaw, Harry, Sukenik, Nir, Alpern, Hen, Yochelis, Shira, Robinson, Jason W. A., Millo, Oded, Paltiel, Yossi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 117
creator Periyasamy, Manimuthu
Bradshaw, Harry
Sukenik, Nir
Alpern, Hen
Yochelis, Shira
Robinson, Jason W. A.
Millo, Oded
Paltiel, Yossi
description The superconductor proximity effect in systems comprising metallic nanoparticles (NPs) and molecules (NP/molecule/superconductor heterostructure) is an intriguing phenomenon that gives rise to important questions, from both fundamental and applicative perspectives, about the nature of Andreev reflections in nanoscale NPs and molecules and the interplay between the different energy scales, which remain hotly debated. In recent studies of such systems, a unique proximity effect was observed, manifested by an enhancement, rather than reduction, of the superconductor critical temperature, TC, which can be related to higher order Andreev reflections of Cooper pairs that couple through the organic molecule linkers. In the present study, we investigate the proximity effect in such hybrid systems, using two types of superconducting films (Nb0.17Re0.83 and Nb), coupled Au or Ag NPs, via chiral or non-chiral molecule linkers. Non-chiral linkers lead to an enhancement of TC after NP attachment, in agreement with previous results, while chiral linkers cause a decrease in TC following NP adsorption. The results with chiral linkers can be explained by the following possible factors: the magnetic-like behavior that chiral molecules exhibit owing to their spin-filtering properties, which should enhance pair breaking, and strong spin–orbit coupling at the linker/NP interface that affects Andreev reflections between the superconductor and the NP and acts to reduce TC within a two-band model we discuss. The insight gained from this work into the interaction between chiral molecules and superconductors is of importance for applications in chiral-based superconducting spintronics.
doi_str_mv 10.1063/5.0030892
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2469875654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469875654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8c724ef1a18c55942d1514f748c4bc6a2cbaa5de8576c23e30353525657b217d3</originalsourceid><addsrcrecordid>eNqd0M1KxDAQB_AgCq6rB98g4Emhaz6apvUmi1-w4GX3HNI0ZbO2TU3Sxd72HXxDn8TIrnj3NMzwY4b5A3CJ0QyjjN6yGUIU5QU5AhOMOE8oxvkxmKA4TrKC4VNw5v0mtoxQOgG7VWe22nnZwN7ZD9OaMEJd11oFD00H12PpTAX90GunbFcNKlj3tftsTPemHWxto9XQ6DjpZGd76YJRjYZ-9EG3_g4u1_qwDtr6l0sH1do42cRj5-Cklo3XF4c6BavHh-X8OVm8Pr3M7xeJooSHJFecpLrGEueKsSIlFWY4rXmaq7RUmSSqlJJVOmc8U4RqiiijjLCM8ZJgXtEpuNrvjW--D9oHsbGD6-JJQdKsyHmkaVTXe6Wc9d7pWvTOtNKNAiPxE7Bg4hBwtDd765UJMhjb_Q9vrfuDoq9q-g1xJ43s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469875654</pqid></control><display><type>article</type><title>Universal proximity effects in hybrid superconductor–linker molecule–nanoparticle systems: The effect of molecular chirality</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Periyasamy, Manimuthu ; Bradshaw, Harry ; Sukenik, Nir ; Alpern, Hen ; Yochelis, Shira ; Robinson, Jason W. A. ; Millo, Oded ; Paltiel, Yossi</creator><creatorcontrib>Periyasamy, Manimuthu ; Bradshaw, Harry ; Sukenik, Nir ; Alpern, Hen ; Yochelis, Shira ; Robinson, Jason W. A. ; Millo, Oded ; Paltiel, Yossi</creatorcontrib><description>The superconductor proximity effect in systems comprising metallic nanoparticles (NPs) and molecules (NP/molecule/superconductor heterostructure) is an intriguing phenomenon that gives rise to important questions, from both fundamental and applicative perspectives, about the nature of Andreev reflections in nanoscale NPs and molecules and the interplay between the different energy scales, which remain hotly debated. In recent studies of such systems, a unique proximity effect was observed, manifested by an enhancement, rather than reduction, of the superconductor critical temperature, TC, which can be related to higher order Andreev reflections of Cooper pairs that couple through the organic molecule linkers. In the present study, we investigate the proximity effect in such hybrid systems, using two types of superconducting films (Nb0.17Re0.83 and Nb), coupled Au or Ag NPs, via chiral or non-chiral molecule linkers. Non-chiral linkers lead to an enhancement of TC after NP attachment, in agreement with previous results, while chiral linkers cause a decrease in TC following NP adsorption. The results with chiral linkers can be explained by the following possible factors: the magnetic-like behavior that chiral molecules exhibit owing to their spin-filtering properties, which should enhance pair breaking, and strong spin–orbit coupling at the linker/NP interface that affects Andreev reflections between the superconductor and the NP and acts to reduce TC within a two-band model we discuss. The insight gained from this work into the interaction between chiral molecules and superconductors is of importance for applications in chiral-based superconducting spintronics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0030892</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Chirality ; Cooper pairs ; Coupling (molecular) ; Critical temperature ; Gold ; Heterostructures ; Hybrid systems ; Magnetic properties ; Nanoparticles ; Organic chemistry ; Proximity ; Proximity effect (electricity) ; Silver ; Spin-orbit interactions ; Spintronics ; Superconducting films ; Superconductivity ; Superconductors</subject><ispartof>Applied physics letters, 2020-12, Vol.117 (24)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8c724ef1a18c55942d1514f748c4bc6a2cbaa5de8576c23e30353525657b217d3</citedby><cites>FETCH-LOGICAL-c327t-8c724ef1a18c55942d1514f748c4bc6a2cbaa5de8576c23e30353525657b217d3</cites><orcidid>0000-0002-4723-722X ; 0000-0003-4377-0294 ; 0000-0002-7566-8641 ; 0000-0002-8739-9952 ; 0000-0001-5716-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0030892$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Periyasamy, Manimuthu</creatorcontrib><creatorcontrib>Bradshaw, Harry</creatorcontrib><creatorcontrib>Sukenik, Nir</creatorcontrib><creatorcontrib>Alpern, Hen</creatorcontrib><creatorcontrib>Yochelis, Shira</creatorcontrib><creatorcontrib>Robinson, Jason W. A.</creatorcontrib><creatorcontrib>Millo, Oded</creatorcontrib><creatorcontrib>Paltiel, Yossi</creatorcontrib><title>Universal proximity effects in hybrid superconductor–linker molecule–nanoparticle systems: The effect of molecular chirality</title><title>Applied physics letters</title><description>The superconductor proximity effect in systems comprising metallic nanoparticles (NPs) and molecules (NP/molecule/superconductor heterostructure) is an intriguing phenomenon that gives rise to important questions, from both fundamental and applicative perspectives, about the nature of Andreev reflections in nanoscale NPs and molecules and the interplay between the different energy scales, which remain hotly debated. In recent studies of such systems, a unique proximity effect was observed, manifested by an enhancement, rather than reduction, of the superconductor critical temperature, TC, which can be related to higher order Andreev reflections of Cooper pairs that couple through the organic molecule linkers. In the present study, we investigate the proximity effect in such hybrid systems, using two types of superconducting films (Nb0.17Re0.83 and Nb), coupled Au or Ag NPs, via chiral or non-chiral molecule linkers. Non-chiral linkers lead to an enhancement of TC after NP attachment, in agreement with previous results, while chiral linkers cause a decrease in TC following NP adsorption. The results with chiral linkers can be explained by the following possible factors: the magnetic-like behavior that chiral molecules exhibit owing to their spin-filtering properties, which should enhance pair breaking, and strong spin–orbit coupling at the linker/NP interface that affects Andreev reflections between the superconductor and the NP and acts to reduce TC within a two-band model we discuss. The insight gained from this work into the interaction between chiral molecules and superconductors is of importance for applications in chiral-based superconducting spintronics.</description><subject>Applied physics</subject><subject>Chirality</subject><subject>Cooper pairs</subject><subject>Coupling (molecular)</subject><subject>Critical temperature</subject><subject>Gold</subject><subject>Heterostructures</subject><subject>Hybrid systems</subject><subject>Magnetic properties</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Proximity</subject><subject>Proximity effect (electricity)</subject><subject>Silver</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Superconducting films</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAQB_AgCq6rB98g4Emhaz6apvUmi1-w4GX3HNI0ZbO2TU3Sxd72HXxDn8TIrnj3NMzwY4b5A3CJ0QyjjN6yGUIU5QU5AhOMOE8oxvkxmKA4TrKC4VNw5v0mtoxQOgG7VWe22nnZwN7ZD9OaMEJd11oFD00H12PpTAX90GunbFcNKlj3tftsTPemHWxto9XQ6DjpZGd76YJRjYZ-9EG3_g4u1_qwDtr6l0sH1do42cRj5-Cklo3XF4c6BavHh-X8OVm8Pr3M7xeJooSHJFecpLrGEueKsSIlFWY4rXmaq7RUmSSqlJJVOmc8U4RqiiijjLCM8ZJgXtEpuNrvjW--D9oHsbGD6-JJQdKsyHmkaVTXe6Wc9d7pWvTOtNKNAiPxE7Bg4hBwtDd765UJMhjb_Q9vrfuDoq9q-g1xJ43s</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Periyasamy, Manimuthu</creator><creator>Bradshaw, Harry</creator><creator>Sukenik, Nir</creator><creator>Alpern, Hen</creator><creator>Yochelis, Shira</creator><creator>Robinson, Jason W. A.</creator><creator>Millo, Oded</creator><creator>Paltiel, Yossi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4723-722X</orcidid><orcidid>https://orcid.org/0000-0003-4377-0294</orcidid><orcidid>https://orcid.org/0000-0002-7566-8641</orcidid><orcidid>https://orcid.org/0000-0002-8739-9952</orcidid><orcidid>https://orcid.org/0000-0001-5716-9083</orcidid></search><sort><creationdate>20201214</creationdate><title>Universal proximity effects in hybrid superconductor–linker molecule–nanoparticle systems: The effect of molecular chirality</title><author>Periyasamy, Manimuthu ; Bradshaw, Harry ; Sukenik, Nir ; Alpern, Hen ; Yochelis, Shira ; Robinson, Jason W. A. ; Millo, Oded ; Paltiel, Yossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8c724ef1a18c55942d1514f748c4bc6a2cbaa5de8576c23e30353525657b217d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Chirality</topic><topic>Cooper pairs</topic><topic>Coupling (molecular)</topic><topic>Critical temperature</topic><topic>Gold</topic><topic>Heterostructures</topic><topic>Hybrid systems</topic><topic>Magnetic properties</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Proximity</topic><topic>Proximity effect (electricity)</topic><topic>Silver</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Superconducting films</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Periyasamy, Manimuthu</creatorcontrib><creatorcontrib>Bradshaw, Harry</creatorcontrib><creatorcontrib>Sukenik, Nir</creatorcontrib><creatorcontrib>Alpern, Hen</creatorcontrib><creatorcontrib>Yochelis, Shira</creatorcontrib><creatorcontrib>Robinson, Jason W. A.</creatorcontrib><creatorcontrib>Millo, Oded</creatorcontrib><creatorcontrib>Paltiel, Yossi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Periyasamy, Manimuthu</au><au>Bradshaw, Harry</au><au>Sukenik, Nir</au><au>Alpern, Hen</au><au>Yochelis, Shira</au><au>Robinson, Jason W. A.</au><au>Millo, Oded</au><au>Paltiel, Yossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal proximity effects in hybrid superconductor–linker molecule–nanoparticle systems: The effect of molecular chirality</atitle><jtitle>Applied physics letters</jtitle><date>2020-12-14</date><risdate>2020</risdate><volume>117</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The superconductor proximity effect in systems comprising metallic nanoparticles (NPs) and molecules (NP/molecule/superconductor heterostructure) is an intriguing phenomenon that gives rise to important questions, from both fundamental and applicative perspectives, about the nature of Andreev reflections in nanoscale NPs and molecules and the interplay between the different energy scales, which remain hotly debated. In recent studies of such systems, a unique proximity effect was observed, manifested by an enhancement, rather than reduction, of the superconductor critical temperature, TC, which can be related to higher order Andreev reflections of Cooper pairs that couple through the organic molecule linkers. In the present study, we investigate the proximity effect in such hybrid systems, using two types of superconducting films (Nb0.17Re0.83 and Nb), coupled Au or Ag NPs, via chiral or non-chiral molecule linkers. Non-chiral linkers lead to an enhancement of TC after NP attachment, in agreement with previous results, while chiral linkers cause a decrease in TC following NP adsorption. The results with chiral linkers can be explained by the following possible factors: the magnetic-like behavior that chiral molecules exhibit owing to their spin-filtering properties, which should enhance pair breaking, and strong spin–orbit coupling at the linker/NP interface that affects Andreev reflections between the superconductor and the NP and acts to reduce TC within a two-band model we discuss. The insight gained from this work into the interaction between chiral molecules and superconductors is of importance for applications in chiral-based superconducting spintronics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0030892</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4723-722X</orcidid><orcidid>https://orcid.org/0000-0003-4377-0294</orcidid><orcidid>https://orcid.org/0000-0002-7566-8641</orcidid><orcidid>https://orcid.org/0000-0002-8739-9952</orcidid><orcidid>https://orcid.org/0000-0001-5716-9083</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-12, Vol.117 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2469875654
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Chirality
Cooper pairs
Coupling (molecular)
Critical temperature
Gold
Heterostructures
Hybrid systems
Magnetic properties
Nanoparticles
Organic chemistry
Proximity
Proximity effect (electricity)
Silver
Spin-orbit interactions
Spintronics
Superconducting films
Superconductivity
Superconductors
title Universal proximity effects in hybrid superconductor–linker molecule–nanoparticle systems: The effect of molecular chirality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20proximity%20effects%20in%20hybrid%20superconductor%E2%80%93linker%20molecule%E2%80%93nanoparticle%20systems:%20The%20effect%20of%20molecular%20chirality&rft.jtitle=Applied%20physics%20letters&rft.au=Periyasamy,%20Manimuthu&rft.date=2020-12-14&rft.volume=117&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0030892&rft_dat=%3Cproquest_scita%3E2469875654%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469875654&rft_id=info:pmid/&rfr_iscdi=true