Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector

DEAP-3600 is a single-phase liquid argon detector aiming to directly detect weakly interacting massive particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon, spin-indep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-10, Vol.102 (8), Article 082001
Hauptverfasser: Adhikari, P., Ajaj, R., Auty, D. J., Bina, C. E., Bonivento, W., Boulay, M. G., Cadeddu, M., Cai, B., Cárdenas-Montes, M., Cavuoti, S., Chen, Y., Cleveland, B. T., Corning, J. M., Daugherty, S., DelGobbo, P., Di Stefano, P., Doria, L., Dunford, M., Erlandson, A., Farahani, S. S., Fatemighomi, N., Fiorillo, G., Gallacher, D., Garcés, E. A., García Abia, P., Garg, S., Giampa, P., Goeldi, D., Gorel, P., Graham, K., Grobov, A., Hallin, A. L., Hamstra, M., Hugues, T., Ilyasov, A., Joy, A., Jigmeddorj, B., Jillings, C. J., Kamaev, O., Kaur, G., Kemp, A., Kochanek, I., Kuźniak, M., Lai, M., Langrock, S., Lehnert, B., Levashko, N., Li, X., Litvinov, O., Lock, J., Longo, G., Machulin, I., McDonald, A. B., McElroy, T., McLaughlin, J. B., Mielnichuk, C., Monroe, J., Oliviéro, G., Pal, S., Peeters, S. J. M., Pesudo, V., Piro, M.-C., Pollmann, T. R., Rand, E. T., Rethmeier, C., Retière, F., Rodríguez-García, I., Roszkowski, L., Sanchez García, E., Sánchez-Pastor, T., Santorelli, R., Sinclair, D., Skensved, P., Smith, B., Smith, N. J. T., Sonley, T., Stainforth, R., Stringer, M., Sur, B., Vázquez-Jáuregui, E., Viel, S., Vincent, A. C., Walding, J., Waqar, M., Ward, M., Westerdale, S., Willis, J., Zuñiga-Reyes, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 102
creator Adhikari, P.
Ajaj, R.
Auty, D. J.
Bina, C. E.
Bonivento, W.
Boulay, M. G.
Cadeddu, M.
Cai, B.
Cárdenas-Montes, M.
Cavuoti, S.
Chen, Y.
Cleveland, B. T.
Corning, J. M.
Daugherty, S.
DelGobbo, P.
Di Stefano, P.
Doria, L.
Dunford, M.
Erlandson, A.
Farahani, S. S.
Fatemighomi, N.
Fiorillo, G.
Gallacher, D.
Garcés, E. A.
García Abia, P.
Garg, S.
Giampa, P.
Goeldi, D.
Gorel, P.
Graham, K.
Grobov, A.
Hallin, A. L.
Hamstra, M.
Hugues, T.
Ilyasov, A.
Joy, A.
Jigmeddorj, B.
Jillings, C. J.
Kamaev, O.
Kaur, G.
Kemp, A.
Kochanek, I.
Kuźniak, M.
Lai, M.
Langrock, S.
Lehnert, B.
Levashko, N.
Li, X.
Litvinov, O.
Lock, J.
Longo, G.
Machulin, I.
McDonald, A. B.
McElroy, T.
McLaughlin, J. B.
Mielnichuk, C.
Monroe, J.
Oliviéro, G.
Pal, S.
Peeters, S. J. M.
Pesudo, V.
Piro, M.-C.
Pollmann, T. R.
Rand, E. T.
Rethmeier, C.
Retière, F.
Rodríguez-García, I.
Roszkowski, L.
Sanchez García, E.
Sánchez-Pastor, T.
Santorelli, R.
Sinclair, D.
Skensved, P.
Smith, B.
Smith, N. J. T.
Sonley, T.
Stainforth, R.
Stringer, M.
Sur, B.
Vázquez-Jáuregui, E.
Viel, S.
Vincent, A. C.
Walding, J.
Waqar, M.
Ward, M.
Westerdale, S.
Willis, J.
Zuñiga-Reyes, A.
description DEAP-3600 is a single-phase liquid argon detector aiming to directly detect weakly interacting massive particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon, spin-independent, isoscalar cross section. This study reinterprets this result within a nonrelativistic effective field theory framework and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1, O3, O5, O8, and O11, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5 and O8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV / c2.
doi_str_mv 10.1103/PhysRevD.102.082001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469845341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469845341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a47b9828f7ce8cbdf1318c02aff55e633b6efd292ff512b36b4b25ec0e7a729f3</originalsourceid><addsrcrecordid>eNo9UMtKAzEUHUTBUvsFbgKup94k81yWtj6goIiuh0zmxqadJjXJFPoXfrLRqqt77uE84CTJNYUppcBvn9dH_4KHxZQCm0LFAOhZMmJZCSkAq8__MYXLZOL9BiIsoC4pHSWfc2t8cEKb4Ik1pBNuS3YiBHSpGWSPkUOlUAZ9QCLtsO-1efdEGxLWSPYOPRqJxCqy1QajU0vR90fSaR-0kYGsRW-JH9rYMsgwRAMZfMz48S-Ws-eUFwCkwxBLrLtKLpToPU5-7zh5u1u-zh_S1dP943y2SiXPeEhFVrZ1xSpVSqxk2ynKaSWBCaXyHAvO2wJVx2oWf8paXrRZy3KUgKUoWa34OLk55e6d_RjQh2ZjB2diZcOyoq6ynGc0qvhJJZ313qFq9k7vhDs2FJrv9Zu_9SPBmtP6_AvX0XzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469845341</pqid></control><display><type>article</type><title>Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector</title><source>American Physical Society Journals</source><creator>Adhikari, P. ; Ajaj, R. ; Auty, D. J. ; Bina, C. E. ; Bonivento, W. ; Boulay, M. G. ; Cadeddu, M. ; Cai, B. ; Cárdenas-Montes, M. ; Cavuoti, S. ; Chen, Y. ; Cleveland, B. T. ; Corning, J. M. ; Daugherty, S. ; DelGobbo, P. ; Di Stefano, P. ; Doria, L. ; Dunford, M. ; Erlandson, A. ; Farahani, S. S. ; Fatemighomi, N. ; Fiorillo, G. ; Gallacher, D. ; Garcés, E. A. ; García Abia, P. ; Garg, S. ; Giampa, P. ; Goeldi, D. ; Gorel, P. ; Graham, K. ; Grobov, A. ; Hallin, A. L. ; Hamstra, M. ; Hugues, T. ; Ilyasov, A. ; Joy, A. ; Jigmeddorj, B. ; Jillings, C. J. ; Kamaev, O. ; Kaur, G. ; Kemp, A. ; Kochanek, I. ; Kuźniak, M. ; Lai, M. ; Langrock, S. ; Lehnert, B. ; Levashko, N. ; Li, X. ; Litvinov, O. ; Lock, J. ; Longo, G. ; Machulin, I. ; McDonald, A. B. ; McElroy, T. ; McLaughlin, J. B. ; Mielnichuk, C. ; Monroe, J. ; Oliviéro, G. ; Pal, S. ; Peeters, S. J. M. ; Pesudo, V. ; Piro, M.-C. ; Pollmann, T. R. ; Rand, E. T. ; Rethmeier, C. ; Retière, F. ; Rodríguez-García, I. ; Roszkowski, L. ; Sanchez García, E. ; Sánchez-Pastor, T. ; Santorelli, R. ; Sinclair, D. ; Skensved, P. ; Smith, B. ; Smith, N. J. T. ; Sonley, T. ; Stainforth, R. ; Stringer, M. ; Sur, B. ; Vázquez-Jáuregui, E. ; Viel, S. ; Vincent, A. C. ; Walding, J. ; Waqar, M. ; Ward, M. ; Westerdale, S. ; Willis, J. ; Zuñiga-Reyes, A.</creator><creatorcontrib>Adhikari, P. ; Ajaj, R. ; Auty, D. J. ; Bina, C. E. ; Bonivento, W. ; Boulay, M. G. ; Cadeddu, M. ; Cai, B. ; Cárdenas-Montes, M. ; Cavuoti, S. ; Chen, Y. ; Cleveland, B. T. ; Corning, J. M. ; Daugherty, S. ; DelGobbo, P. ; Di Stefano, P. ; Doria, L. ; Dunford, M. ; Erlandson, A. ; Farahani, S. S. ; Fatemighomi, N. ; Fiorillo, G. ; Gallacher, D. ; Garcés, E. A. ; García Abia, P. ; Garg, S. ; Giampa, P. ; Goeldi, D. ; Gorel, P. ; Graham, K. ; Grobov, A. ; Hallin, A. L. ; Hamstra, M. ; Hugues, T. ; Ilyasov, A. ; Joy, A. ; Jigmeddorj, B. ; Jillings, C. J. ; Kamaev, O. ; Kaur, G. ; Kemp, A. ; Kochanek, I. ; Kuźniak, M. ; Lai, M. ; Langrock, S. ; Lehnert, B. ; Levashko, N. ; Li, X. ; Litvinov, O. ; Lock, J. ; Longo, G. ; Machulin, I. ; McDonald, A. B. ; McElroy, T. ; McLaughlin, J. B. ; Mielnichuk, C. ; Monroe, J. ; Oliviéro, G. ; Pal, S. ; Peeters, S. J. M. ; Pesudo, V. ; Piro, M.-C. ; Pollmann, T. R. ; Rand, E. T. ; Rethmeier, C. ; Retière, F. ; Rodríguez-García, I. ; Roszkowski, L. ; Sanchez García, E. ; Sánchez-Pastor, T. ; Santorelli, R. ; Sinclair, D. ; Skensved, P. ; Smith, B. ; Smith, N. J. T. ; Sonley, T. ; Stainforth, R. ; Stringer, M. ; Sur, B. ; Vázquez-Jáuregui, E. ; Viel, S. ; Vincent, A. C. ; Walding, J. ; Waqar, M. ; Ward, M. ; Westerdale, S. ; Willis, J. ; Zuñiga-Reyes, A. ; DEAP Collaboration</creatorcontrib><description>DEAP-3600 is a single-phase liquid argon detector aiming to directly detect weakly interacting massive particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon, spin-independent, isoscalar cross section. This study reinterprets this result within a nonrelativistic effective field theory framework and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1, O3, O5, O8, and O11, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5 and O8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV / c2.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.082001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Argon ; Celestial bodies ; Couplings ; Dark matter ; Electric contacts ; Electric dipoles ; Enceladus ; Field theory ; Magnetic dipoles ; Nucleons ; Operators ; Sky surveys (astronomy) ; Substructures ; Upper bounds ; Velocity distribution ; Weakly interacting massive particles</subject><ispartof>Physical review. D, 2020-10, Vol.102 (8), Article 082001</ispartof><rights>Copyright American Physical Society Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a47b9828f7ce8cbdf1318c02aff55e633b6efd292ff512b36b4b25ec0e7a729f3</citedby><cites>FETCH-LOGICAL-c343t-a47b9828f7ce8cbdf1318c02aff55e633b6efd292ff512b36b4b25ec0e7a729f3</cites><orcidid>0000-0001-8824-6205 ; 0000-0003-4972-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Adhikari, P.</creatorcontrib><creatorcontrib>Ajaj, R.</creatorcontrib><creatorcontrib>Auty, D. J.</creatorcontrib><creatorcontrib>Bina, C. E.</creatorcontrib><creatorcontrib>Bonivento, W.</creatorcontrib><creatorcontrib>Boulay, M. G.</creatorcontrib><creatorcontrib>Cadeddu, M.</creatorcontrib><creatorcontrib>Cai, B.</creatorcontrib><creatorcontrib>Cárdenas-Montes, M.</creatorcontrib><creatorcontrib>Cavuoti, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Cleveland, B. T.</creatorcontrib><creatorcontrib>Corning, J. M.</creatorcontrib><creatorcontrib>Daugherty, S.</creatorcontrib><creatorcontrib>DelGobbo, P.</creatorcontrib><creatorcontrib>Di Stefano, P.</creatorcontrib><creatorcontrib>Doria, L.</creatorcontrib><creatorcontrib>Dunford, M.</creatorcontrib><creatorcontrib>Erlandson, A.</creatorcontrib><creatorcontrib>Farahani, S. S.</creatorcontrib><creatorcontrib>Fatemighomi, N.</creatorcontrib><creatorcontrib>Fiorillo, G.</creatorcontrib><creatorcontrib>Gallacher, D.</creatorcontrib><creatorcontrib>Garcés, E. A.</creatorcontrib><creatorcontrib>García Abia, P.</creatorcontrib><creatorcontrib>Garg, S.</creatorcontrib><creatorcontrib>Giampa, P.</creatorcontrib><creatorcontrib>Goeldi, D.</creatorcontrib><creatorcontrib>Gorel, P.</creatorcontrib><creatorcontrib>Graham, K.</creatorcontrib><creatorcontrib>Grobov, A.</creatorcontrib><creatorcontrib>Hallin, A. L.</creatorcontrib><creatorcontrib>Hamstra, M.</creatorcontrib><creatorcontrib>Hugues, T.</creatorcontrib><creatorcontrib>Ilyasov, A.</creatorcontrib><creatorcontrib>Joy, A.</creatorcontrib><creatorcontrib>Jigmeddorj, B.</creatorcontrib><creatorcontrib>Jillings, C. J.</creatorcontrib><creatorcontrib>Kamaev, O.</creatorcontrib><creatorcontrib>Kaur, G.</creatorcontrib><creatorcontrib>Kemp, A.</creatorcontrib><creatorcontrib>Kochanek, I.</creatorcontrib><creatorcontrib>Kuźniak, M.</creatorcontrib><creatorcontrib>Lai, M.</creatorcontrib><creatorcontrib>Langrock, S.</creatorcontrib><creatorcontrib>Lehnert, B.</creatorcontrib><creatorcontrib>Levashko, N.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Litvinov, O.</creatorcontrib><creatorcontrib>Lock, J.</creatorcontrib><creatorcontrib>Longo, G.</creatorcontrib><creatorcontrib>Machulin, I.</creatorcontrib><creatorcontrib>McDonald, A. B.</creatorcontrib><creatorcontrib>McElroy, T.</creatorcontrib><creatorcontrib>McLaughlin, J. B.</creatorcontrib><creatorcontrib>Mielnichuk, C.</creatorcontrib><creatorcontrib>Monroe, J.</creatorcontrib><creatorcontrib>Oliviéro, G.</creatorcontrib><creatorcontrib>Pal, S.</creatorcontrib><creatorcontrib>Peeters, S. J. M.</creatorcontrib><creatorcontrib>Pesudo, V.</creatorcontrib><creatorcontrib>Piro, M.-C.</creatorcontrib><creatorcontrib>Pollmann, T. R.</creatorcontrib><creatorcontrib>Rand, E. T.</creatorcontrib><creatorcontrib>Rethmeier, C.</creatorcontrib><creatorcontrib>Retière, F.</creatorcontrib><creatorcontrib>Rodríguez-García, I.</creatorcontrib><creatorcontrib>Roszkowski, L.</creatorcontrib><creatorcontrib>Sanchez García, E.</creatorcontrib><creatorcontrib>Sánchez-Pastor, T.</creatorcontrib><creatorcontrib>Santorelli, R.</creatorcontrib><creatorcontrib>Sinclair, D.</creatorcontrib><creatorcontrib>Skensved, P.</creatorcontrib><creatorcontrib>Smith, B.</creatorcontrib><creatorcontrib>Smith, N. J. T.</creatorcontrib><creatorcontrib>Sonley, T.</creatorcontrib><creatorcontrib>Stainforth, R.</creatorcontrib><creatorcontrib>Stringer, M.</creatorcontrib><creatorcontrib>Sur, B.</creatorcontrib><creatorcontrib>Vázquez-Jáuregui, E.</creatorcontrib><creatorcontrib>Viel, S.</creatorcontrib><creatorcontrib>Vincent, A. C.</creatorcontrib><creatorcontrib>Walding, J.</creatorcontrib><creatorcontrib>Waqar, M.</creatorcontrib><creatorcontrib>Ward, M.</creatorcontrib><creatorcontrib>Westerdale, S.</creatorcontrib><creatorcontrib>Willis, J.</creatorcontrib><creatorcontrib>Zuñiga-Reyes, A.</creatorcontrib><creatorcontrib>DEAP Collaboration</creatorcontrib><title>Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector</title><title>Physical review. D</title><description>DEAP-3600 is a single-phase liquid argon detector aiming to directly detect weakly interacting massive particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon, spin-independent, isoscalar cross section. This study reinterprets this result within a nonrelativistic effective field theory framework and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1, O3, O5, O8, and O11, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5 and O8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV / c2.</description><subject>Argon</subject><subject>Celestial bodies</subject><subject>Couplings</subject><subject>Dark matter</subject><subject>Electric contacts</subject><subject>Electric dipoles</subject><subject>Enceladus</subject><subject>Field theory</subject><subject>Magnetic dipoles</subject><subject>Nucleons</subject><subject>Operators</subject><subject>Sky surveys (astronomy)</subject><subject>Substructures</subject><subject>Upper bounds</subject><subject>Velocity distribution</subject><subject>Weakly interacting massive particles</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKAzEUHUTBUvsFbgKup94k81yWtj6goIiuh0zmxqadJjXJFPoXfrLRqqt77uE84CTJNYUppcBvn9dH_4KHxZQCm0LFAOhZMmJZCSkAq8__MYXLZOL9BiIsoC4pHSWfc2t8cEKb4Ik1pBNuS3YiBHSpGWSPkUOlUAZ9QCLtsO-1efdEGxLWSPYOPRqJxCqy1QajU0vR90fSaR-0kYGsRW-JH9rYMsgwRAMZfMz48S-Ws-eUFwCkwxBLrLtKLpToPU5-7zh5u1u-zh_S1dP943y2SiXPeEhFVrZ1xSpVSqxk2ynKaSWBCaXyHAvO2wJVx2oWf8paXrRZy3KUgKUoWa34OLk55e6d_RjQh2ZjB2diZcOyoq6ynGc0qvhJJZ313qFq9k7vhDs2FJrv9Zu_9SPBmtP6_AvX0XzH</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Adhikari, P.</creator><creator>Ajaj, R.</creator><creator>Auty, D. J.</creator><creator>Bina, C. E.</creator><creator>Bonivento, W.</creator><creator>Boulay, M. G.</creator><creator>Cadeddu, M.</creator><creator>Cai, B.</creator><creator>Cárdenas-Montes, M.</creator><creator>Cavuoti, S.</creator><creator>Chen, Y.</creator><creator>Cleveland, B. T.</creator><creator>Corning, J. M.</creator><creator>Daugherty, S.</creator><creator>DelGobbo, P.</creator><creator>Di Stefano, P.</creator><creator>Doria, L.</creator><creator>Dunford, M.</creator><creator>Erlandson, A.</creator><creator>Farahani, S. S.</creator><creator>Fatemighomi, N.</creator><creator>Fiorillo, G.</creator><creator>Gallacher, D.</creator><creator>Garcés, E. A.</creator><creator>García Abia, P.</creator><creator>Garg, S.</creator><creator>Giampa, P.</creator><creator>Goeldi, D.</creator><creator>Gorel, P.</creator><creator>Graham, K.</creator><creator>Grobov, A.</creator><creator>Hallin, A. L.</creator><creator>Hamstra, M.</creator><creator>Hugues, T.</creator><creator>Ilyasov, A.</creator><creator>Joy, A.</creator><creator>Jigmeddorj, B.</creator><creator>Jillings, C. J.</creator><creator>Kamaev, O.</creator><creator>Kaur, G.</creator><creator>Kemp, A.</creator><creator>Kochanek, I.</creator><creator>Kuźniak, M.</creator><creator>Lai, M.</creator><creator>Langrock, S.</creator><creator>Lehnert, B.</creator><creator>Levashko, N.</creator><creator>Li, X.</creator><creator>Litvinov, O.</creator><creator>Lock, J.</creator><creator>Longo, G.</creator><creator>Machulin, I.</creator><creator>McDonald, A. B.</creator><creator>McElroy, T.</creator><creator>McLaughlin, J. B.</creator><creator>Mielnichuk, C.</creator><creator>Monroe, J.</creator><creator>Oliviéro, G.</creator><creator>Pal, S.</creator><creator>Peeters, S. J. M.</creator><creator>Pesudo, V.</creator><creator>Piro, M.-C.</creator><creator>Pollmann, T. R.</creator><creator>Rand, E. T.</creator><creator>Rethmeier, C.</creator><creator>Retière, F.</creator><creator>Rodríguez-García, I.</creator><creator>Roszkowski, L.</creator><creator>Sanchez García, E.</creator><creator>Sánchez-Pastor, T.</creator><creator>Santorelli, R.</creator><creator>Sinclair, D.</creator><creator>Skensved, P.</creator><creator>Smith, B.</creator><creator>Smith, N. J. T.</creator><creator>Sonley, T.</creator><creator>Stainforth, R.</creator><creator>Stringer, M.</creator><creator>Sur, B.</creator><creator>Vázquez-Jáuregui, E.</creator><creator>Viel, S.</creator><creator>Vincent, A. C.</creator><creator>Walding, J.</creator><creator>Waqar, M.</creator><creator>Ward, M.</creator><creator>Westerdale, S.</creator><creator>Willis, J.</creator><creator>Zuñiga-Reyes, A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8824-6205</orcidid><orcidid>https://orcid.org/0000-0003-4972-5611</orcidid></search><sort><creationdate>20201022</creationdate><title>Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector</title><author>Adhikari, P. ; Ajaj, R. ; Auty, D. J. ; Bina, C. E. ; Bonivento, W. ; Boulay, M. G. ; Cadeddu, M. ; Cai, B. ; Cárdenas-Montes, M. ; Cavuoti, S. ; Chen, Y. ; Cleveland, B. T. ; Corning, J. M. ; Daugherty, S. ; DelGobbo, P. ; Di Stefano, P. ; Doria, L. ; Dunford, M. ; Erlandson, A. ; Farahani, S. S. ; Fatemighomi, N. ; Fiorillo, G. ; Gallacher, D. ; Garcés, E. A. ; García Abia, P. ; Garg, S. ; Giampa, P. ; Goeldi, D. ; Gorel, P. ; Graham, K. ; Grobov, A. ; Hallin, A. L. ; Hamstra, M. ; Hugues, T. ; Ilyasov, A. ; Joy, A. ; Jigmeddorj, B. ; Jillings, C. J. ; Kamaev, O. ; Kaur, G. ; Kemp, A. ; Kochanek, I. ; Kuźniak, M. ; Lai, M. ; Langrock, S. ; Lehnert, B. ; Levashko, N. ; Li, X. ; Litvinov, O. ; Lock, J. ; Longo, G. ; Machulin, I. ; McDonald, A. B. ; McElroy, T. ; McLaughlin, J. B. ; Mielnichuk, C. ; Monroe, J. ; Oliviéro, G. ; Pal, S. ; Peeters, S. J. M. ; Pesudo, V. ; Piro, M.-C. ; Pollmann, T. R. ; Rand, E. T. ; Rethmeier, C. ; Retière, F. ; Rodríguez-García, I. ; Roszkowski, L. ; Sanchez García, E. ; Sánchez-Pastor, T. ; Santorelli, R. ; Sinclair, D. ; Skensved, P. ; Smith, B. ; Smith, N. J. T. ; Sonley, T. ; Stainforth, R. ; Stringer, M. ; Sur, B. ; Vázquez-Jáuregui, E. ; Viel, S. ; Vincent, A. C. ; Walding, J. ; Waqar, M. ; Ward, M. ; Westerdale, S. ; Willis, J. ; Zuñiga-Reyes, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a47b9828f7ce8cbdf1318c02aff55e633b6efd292ff512b36b4b25ec0e7a729f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Argon</topic><topic>Celestial bodies</topic><topic>Couplings</topic><topic>Dark matter</topic><topic>Electric contacts</topic><topic>Electric dipoles</topic><topic>Enceladus</topic><topic>Field theory</topic><topic>Magnetic dipoles</topic><topic>Nucleons</topic><topic>Operators</topic><topic>Sky surveys (astronomy)</topic><topic>Substructures</topic><topic>Upper bounds</topic><topic>Velocity distribution</topic><topic>Weakly interacting massive particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, P.</creatorcontrib><creatorcontrib>Ajaj, R.</creatorcontrib><creatorcontrib>Auty, D. J.</creatorcontrib><creatorcontrib>Bina, C. E.</creatorcontrib><creatorcontrib>Bonivento, W.</creatorcontrib><creatorcontrib>Boulay, M. G.</creatorcontrib><creatorcontrib>Cadeddu, M.</creatorcontrib><creatorcontrib>Cai, B.</creatorcontrib><creatorcontrib>Cárdenas-Montes, M.</creatorcontrib><creatorcontrib>Cavuoti, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Cleveland, B. T.</creatorcontrib><creatorcontrib>Corning, J. M.</creatorcontrib><creatorcontrib>Daugherty, S.</creatorcontrib><creatorcontrib>DelGobbo, P.</creatorcontrib><creatorcontrib>Di Stefano, P.</creatorcontrib><creatorcontrib>Doria, L.</creatorcontrib><creatorcontrib>Dunford, M.</creatorcontrib><creatorcontrib>Erlandson, A.</creatorcontrib><creatorcontrib>Farahani, S. S.</creatorcontrib><creatorcontrib>Fatemighomi, N.</creatorcontrib><creatorcontrib>Fiorillo, G.</creatorcontrib><creatorcontrib>Gallacher, D.</creatorcontrib><creatorcontrib>Garcés, E. A.</creatorcontrib><creatorcontrib>García Abia, P.</creatorcontrib><creatorcontrib>Garg, S.</creatorcontrib><creatorcontrib>Giampa, P.</creatorcontrib><creatorcontrib>Goeldi, D.</creatorcontrib><creatorcontrib>Gorel, P.</creatorcontrib><creatorcontrib>Graham, K.</creatorcontrib><creatorcontrib>Grobov, A.</creatorcontrib><creatorcontrib>Hallin, A. L.</creatorcontrib><creatorcontrib>Hamstra, M.</creatorcontrib><creatorcontrib>Hugues, T.</creatorcontrib><creatorcontrib>Ilyasov, A.</creatorcontrib><creatorcontrib>Joy, A.</creatorcontrib><creatorcontrib>Jigmeddorj, B.</creatorcontrib><creatorcontrib>Jillings, C. J.</creatorcontrib><creatorcontrib>Kamaev, O.</creatorcontrib><creatorcontrib>Kaur, G.</creatorcontrib><creatorcontrib>Kemp, A.</creatorcontrib><creatorcontrib>Kochanek, I.</creatorcontrib><creatorcontrib>Kuźniak, M.</creatorcontrib><creatorcontrib>Lai, M.</creatorcontrib><creatorcontrib>Langrock, S.</creatorcontrib><creatorcontrib>Lehnert, B.</creatorcontrib><creatorcontrib>Levashko, N.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Litvinov, O.</creatorcontrib><creatorcontrib>Lock, J.</creatorcontrib><creatorcontrib>Longo, G.</creatorcontrib><creatorcontrib>Machulin, I.</creatorcontrib><creatorcontrib>McDonald, A. B.</creatorcontrib><creatorcontrib>McElroy, T.</creatorcontrib><creatorcontrib>McLaughlin, J. B.</creatorcontrib><creatorcontrib>Mielnichuk, C.</creatorcontrib><creatorcontrib>Monroe, J.</creatorcontrib><creatorcontrib>Oliviéro, G.</creatorcontrib><creatorcontrib>Pal, S.</creatorcontrib><creatorcontrib>Peeters, S. J. M.</creatorcontrib><creatorcontrib>Pesudo, V.</creatorcontrib><creatorcontrib>Piro, M.-C.</creatorcontrib><creatorcontrib>Pollmann, T. R.</creatorcontrib><creatorcontrib>Rand, E. T.</creatorcontrib><creatorcontrib>Rethmeier, C.</creatorcontrib><creatorcontrib>Retière, F.</creatorcontrib><creatorcontrib>Rodríguez-García, I.</creatorcontrib><creatorcontrib>Roszkowski, L.</creatorcontrib><creatorcontrib>Sanchez García, E.</creatorcontrib><creatorcontrib>Sánchez-Pastor, T.</creatorcontrib><creatorcontrib>Santorelli, R.</creatorcontrib><creatorcontrib>Sinclair, D.</creatorcontrib><creatorcontrib>Skensved, P.</creatorcontrib><creatorcontrib>Smith, B.</creatorcontrib><creatorcontrib>Smith, N. J. T.</creatorcontrib><creatorcontrib>Sonley, T.</creatorcontrib><creatorcontrib>Stainforth, R.</creatorcontrib><creatorcontrib>Stringer, M.</creatorcontrib><creatorcontrib>Sur, B.</creatorcontrib><creatorcontrib>Vázquez-Jáuregui, E.</creatorcontrib><creatorcontrib>Viel, S.</creatorcontrib><creatorcontrib>Vincent, A. C.</creatorcontrib><creatorcontrib>Walding, J.</creatorcontrib><creatorcontrib>Waqar, M.</creatorcontrib><creatorcontrib>Ward, M.</creatorcontrib><creatorcontrib>Westerdale, S.</creatorcontrib><creatorcontrib>Willis, J.</creatorcontrib><creatorcontrib>Zuñiga-Reyes, A.</creatorcontrib><creatorcontrib>DEAP Collaboration</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, P.</au><au>Ajaj, R.</au><au>Auty, D. J.</au><au>Bina, C. E.</au><au>Bonivento, W.</au><au>Boulay, M. G.</au><au>Cadeddu, M.</au><au>Cai, B.</au><au>Cárdenas-Montes, M.</au><au>Cavuoti, S.</au><au>Chen, Y.</au><au>Cleveland, B. T.</au><au>Corning, J. M.</au><au>Daugherty, S.</au><au>DelGobbo, P.</au><au>Di Stefano, P.</au><au>Doria, L.</au><au>Dunford, M.</au><au>Erlandson, A.</au><au>Farahani, S. S.</au><au>Fatemighomi, N.</au><au>Fiorillo, G.</au><au>Gallacher, D.</au><au>Garcés, E. A.</au><au>García Abia, P.</au><au>Garg, S.</au><au>Giampa, P.</au><au>Goeldi, D.</au><au>Gorel, P.</au><au>Graham, K.</au><au>Grobov, A.</au><au>Hallin, A. L.</au><au>Hamstra, M.</au><au>Hugues, T.</au><au>Ilyasov, A.</au><au>Joy, A.</au><au>Jigmeddorj, B.</au><au>Jillings, C. J.</au><au>Kamaev, O.</au><au>Kaur, G.</au><au>Kemp, A.</au><au>Kochanek, I.</au><au>Kuźniak, M.</au><au>Lai, M.</au><au>Langrock, S.</au><au>Lehnert, B.</au><au>Levashko, N.</au><au>Li, X.</au><au>Litvinov, O.</au><au>Lock, J.</au><au>Longo, G.</au><au>Machulin, I.</au><au>McDonald, A. B.</au><au>McElroy, T.</au><au>McLaughlin, J. B.</au><au>Mielnichuk, C.</au><au>Monroe, J.</au><au>Oliviéro, G.</au><au>Pal, S.</au><au>Peeters, S. J. M.</au><au>Pesudo, V.</au><au>Piro, M.-C.</au><au>Pollmann, T. R.</au><au>Rand, E. T.</au><au>Rethmeier, C.</au><au>Retière, F.</au><au>Rodríguez-García, I.</au><au>Roszkowski, L.</au><au>Sanchez García, E.</au><au>Sánchez-Pastor, T.</au><au>Santorelli, R.</au><au>Sinclair, D.</au><au>Skensved, P.</au><au>Smith, B.</au><au>Smith, N. J. T.</au><au>Sonley, T.</au><au>Stainforth, R.</au><au>Stringer, M.</au><au>Sur, B.</au><au>Vázquez-Jáuregui, E.</au><au>Viel, S.</au><au>Vincent, A. C.</au><au>Walding, J.</au><au>Waqar, M.</au><au>Ward, M.</au><au>Westerdale, S.</au><au>Willis, J.</au><au>Zuñiga-Reyes, A.</au><aucorp>DEAP Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector</atitle><jtitle>Physical review. D</jtitle><date>2020-10-22</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><artnum>082001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>DEAP-3600 is a single-phase liquid argon detector aiming to directly detect weakly interacting massive particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon, spin-independent, isoscalar cross section. This study reinterprets this result within a nonrelativistic effective field theory framework and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1, O3, O5, O8, and O11, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5 and O8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV / c2.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.082001</doi><orcidid>https://orcid.org/0000-0001-8824-6205</orcidid><orcidid>https://orcid.org/0000-0003-4972-5611</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-10, Vol.102 (8), Article 082001
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2469845341
source American Physical Society Journals
subjects Argon
Celestial bodies
Couplings
Dark matter
Electric contacts
Electric dipoles
Enceladus
Field theory
Magnetic dipoles
Nucleons
Operators
Sky surveys (astronomy)
Substructures
Upper bounds
Velocity distribution
Weakly interacting massive particles
title Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20dark%20matter-nucleon%20effective%20couplings%20in%20the%20presence%20of%20kinematically%20distinct%20halo%20substructures%20using%20the%20DEAP-3600%20detector&rft.jtitle=Physical%20review.%20D&rft.au=Adhikari,%20P.&rft.aucorp=DEAP%20Collaboration&rft.date=2020-10-22&rft.volume=102&rft.issue=8&rft.artnum=082001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.082001&rft_dat=%3Cproquest_cross%3E2469845341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469845341&rft_id=info:pmid/&rfr_iscdi=true