Quiver mutations, Seiberg duality, and machine learning

We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting quest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-10, Vol.102 (8), Article 086013
Hauptverfasser: Bao, Jiakang, Franco, Sebastián, He, Yang-Hui, Hirst, Edward, Musiker, Gregg, Xiao, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 102
creator Bao, Jiakang
Franco, Sebastián
He, Yang-Hui
Hirst, Edward
Musiker, Gregg
Xiao, Yan
description We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.
doi_str_mv 10.1103/PhysRevD.102.086013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469844411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469844411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpoSHNL-jF0Guc7kqyLB9L-oRA32ch2-tEwbFTyQ7439clbU87LMPM8DF2ibBABHH9shnCGx1uFwh8AVoBihM24TKFGIBnp_8a4ZzNQtjCKBVkKeKEpa-9O5CPdn1nO9c2YR69k8vJr6Oyt7XrhnlkmzLa2WLjGopqsr5xzfqCnVW2DjT7vVP2eX_3sXyMV88PT8ubVVwIzrs4By4qpakEtEQFkrWkVaKE0FjoJOEZyQQBE5RWWZ0XlcxKHPdxnlUiT8SUXR1z97796il0Ztv2vhkrDZcq01JKxNEljq7CtyF4qszeu531g0EwP5DMH6Txwc0RkvgGbsJaKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469844411</pqid></control><display><type>article</type><title>Quiver mutations, Seiberg duality, and machine learning</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Bao, Jiakang ; Franco, Sebastián ; He, Yang-Hui ; Hirst, Edward ; Musiker, Gregg ; Xiao, Yan</creator><creatorcontrib>Bao, Jiakang ; Franco, Sebastián ; He, Yang-Hui ; Hirst, Edward ; Musiker, Gregg ; Xiao, Yan</creatorcontrib><description>We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.086013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Artificial neural networks ; Gauge theory ; Machine learning ; Mathematical analysis ; Mutation ; Questions</subject><ispartof>Physical review. D, 2020-10, Vol.102 (8), Article 086013</ispartof><rights>Copyright American Physical Society Oct 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</citedby><cites>FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</cites><orcidid>0000-0002-9583-1696 ; 0000-0003-1699-4399 ; 0000-0002-0787-8380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Jiakang</creatorcontrib><creatorcontrib>Franco, Sebastián</creatorcontrib><creatorcontrib>He, Yang-Hui</creatorcontrib><creatorcontrib>Hirst, Edward</creatorcontrib><creatorcontrib>Musiker, Gregg</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><title>Quiver mutations, Seiberg duality, and machine learning</title><title>Physical review. D</title><description>We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.</description><subject>Artificial neural networks</subject><subject>Gauge theory</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mutation</subject><subject>Questions</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpoSHNL-jF0Guc7kqyLB9L-oRA32ch2-tEwbFTyQ7439clbU87LMPM8DF2ibBABHH9shnCGx1uFwh8AVoBihM24TKFGIBnp_8a4ZzNQtjCKBVkKeKEpa-9O5CPdn1nO9c2YR69k8vJr6Oyt7XrhnlkmzLa2WLjGopqsr5xzfqCnVW2DjT7vVP2eX_3sXyMV88PT8ubVVwIzrs4By4qpakEtEQFkrWkVaKE0FjoJOEZyQQBE5RWWZ0XlcxKHPdxnlUiT8SUXR1z97796il0Ztv2vhkrDZcq01JKxNEljq7CtyF4qszeu531g0EwP5DMH6Txwc0RkvgGbsJaKg</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Bao, Jiakang</creator><creator>Franco, Sebastián</creator><creator>He, Yang-Hui</creator><creator>Hirst, Edward</creator><creator>Musiker, Gregg</creator><creator>Xiao, Yan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid><orcidid>https://orcid.org/0000-0003-1699-4399</orcidid><orcidid>https://orcid.org/0000-0002-0787-8380</orcidid></search><sort><creationdate>20201015</creationdate><title>Quiver mutations, Seiberg duality, and machine learning</title><author>Bao, Jiakang ; Franco, Sebastián ; He, Yang-Hui ; Hirst, Edward ; Musiker, Gregg ; Xiao, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Gauge theory</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mutation</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Jiakang</creatorcontrib><creatorcontrib>Franco, Sebastián</creatorcontrib><creatorcontrib>He, Yang-Hui</creatorcontrib><creatorcontrib>Hirst, Edward</creatorcontrib><creatorcontrib>Musiker, Gregg</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Jiakang</au><au>Franco, Sebastián</au><au>He, Yang-Hui</au><au>Hirst, Edward</au><au>Musiker, Gregg</au><au>Xiao, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quiver mutations, Seiberg duality, and machine learning</atitle><jtitle>Physical review. D</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><artnum>086013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.086013</doi><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid><orcidid>https://orcid.org/0000-0003-1699-4399</orcidid><orcidid>https://orcid.org/0000-0002-0787-8380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-10, Vol.102 (8), Article 086013
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2469844411
source APS: American Physical Society E-Journals (Physics)
subjects Artificial neural networks
Gauge theory
Machine learning
Mathematical analysis
Mutation
Questions
title Quiver mutations, Seiberg duality, and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quiver%20mutations,%20Seiberg%20duality,%20and%20machine%20learning&rft.jtitle=Physical%20review.%20D&rft.au=Bao,%20Jiakang&rft.date=2020-10-15&rft.volume=102&rft.issue=8&rft.artnum=086013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.086013&rft_dat=%3Cproquest_cross%3E2469844411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469844411&rft_id=info:pmid/&rfr_iscdi=true