Quiver mutations, Seiberg duality, and machine learning
We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting quest...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-10, Vol.102 (8), Article 086013 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 102 |
creator | Bao, Jiakang Franco, Sebastián He, Yang-Hui Hirst, Edward Musiker, Gregg Xiao, Yan |
description | We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved. |
doi_str_mv | 10.1103/PhysRevD.102.086013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469844411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469844411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpoSHNL-jF0Guc7kqyLB9L-oRA32ch2-tEwbFTyQ7439clbU87LMPM8DF2ibBABHH9shnCGx1uFwh8AVoBihM24TKFGIBnp_8a4ZzNQtjCKBVkKeKEpa-9O5CPdn1nO9c2YR69k8vJr6Oyt7XrhnlkmzLa2WLjGopqsr5xzfqCnVW2DjT7vVP2eX_3sXyMV88PT8ubVVwIzrs4By4qpakEtEQFkrWkVaKE0FjoJOEZyQQBE5RWWZ0XlcxKHPdxnlUiT8SUXR1z97796il0Ztv2vhkrDZcq01JKxNEljq7CtyF4qszeu531g0EwP5DMH6Txwc0RkvgGbsJaKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469844411</pqid></control><display><type>article</type><title>Quiver mutations, Seiberg duality, and machine learning</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Bao, Jiakang ; Franco, Sebastián ; He, Yang-Hui ; Hirst, Edward ; Musiker, Gregg ; Xiao, Yan</creator><creatorcontrib>Bao, Jiakang ; Franco, Sebastián ; He, Yang-Hui ; Hirst, Edward ; Musiker, Gregg ; Xiao, Yan</creatorcontrib><description>We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.086013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Artificial neural networks ; Gauge theory ; Machine learning ; Mathematical analysis ; Mutation ; Questions</subject><ispartof>Physical review. D, 2020-10, Vol.102 (8), Article 086013</ispartof><rights>Copyright American Physical Society Oct 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</citedby><cites>FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</cites><orcidid>0000-0002-9583-1696 ; 0000-0003-1699-4399 ; 0000-0002-0787-8380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Jiakang</creatorcontrib><creatorcontrib>Franco, Sebastián</creatorcontrib><creatorcontrib>He, Yang-Hui</creatorcontrib><creatorcontrib>Hirst, Edward</creatorcontrib><creatorcontrib>Musiker, Gregg</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><title>Quiver mutations, Seiberg duality, and machine learning</title><title>Physical review. D</title><description>We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.</description><subject>Artificial neural networks</subject><subject>Gauge theory</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mutation</subject><subject>Questions</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpoSHNL-jF0Guc7kqyLB9L-oRA32ch2-tEwbFTyQ7439clbU87LMPM8DF2ibBABHH9shnCGx1uFwh8AVoBihM24TKFGIBnp_8a4ZzNQtjCKBVkKeKEpa-9O5CPdn1nO9c2YR69k8vJr6Oyt7XrhnlkmzLa2WLjGopqsr5xzfqCnVW2DjT7vVP2eX_3sXyMV88PT8ubVVwIzrs4By4qpakEtEQFkrWkVaKE0FjoJOEZyQQBE5RWWZ0XlcxKHPdxnlUiT8SUXR1z97796il0Ztv2vhkrDZcq01JKxNEljq7CtyF4qszeu531g0EwP5DMH6Txwc0RkvgGbsJaKg</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Bao, Jiakang</creator><creator>Franco, Sebastián</creator><creator>He, Yang-Hui</creator><creator>Hirst, Edward</creator><creator>Musiker, Gregg</creator><creator>Xiao, Yan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid><orcidid>https://orcid.org/0000-0003-1699-4399</orcidid><orcidid>https://orcid.org/0000-0002-0787-8380</orcidid></search><sort><creationdate>20201015</creationdate><title>Quiver mutations, Seiberg duality, and machine learning</title><author>Bao, Jiakang ; Franco, Sebastián ; He, Yang-Hui ; Hirst, Edward ; Musiker, Gregg ; Xiao, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b023f68ed01aeec1eaae86563381c85529e45101514a6a8bcf49d1001229f3b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Gauge theory</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mutation</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Jiakang</creatorcontrib><creatorcontrib>Franco, Sebastián</creatorcontrib><creatorcontrib>He, Yang-Hui</creatorcontrib><creatorcontrib>Hirst, Edward</creatorcontrib><creatorcontrib>Musiker, Gregg</creatorcontrib><creatorcontrib>Xiao, Yan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Jiakang</au><au>Franco, Sebastián</au><au>He, Yang-Hui</au><au>Hirst, Edward</au><au>Musiker, Gregg</au><au>Xiao, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quiver mutations, Seiberg duality, and machine learning</atitle><jtitle>Physical review. D</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><artnum>086013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multiclass determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.086013</doi><orcidid>https://orcid.org/0000-0002-9583-1696</orcidid><orcidid>https://orcid.org/0000-0003-1699-4399</orcidid><orcidid>https://orcid.org/0000-0002-0787-8380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-10, Vol.102 (8), Article 086013 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2469844411 |
source | APS: American Physical Society E-Journals (Physics) |
subjects | Artificial neural networks Gauge theory Machine learning Mathematical analysis Mutation Questions |
title | Quiver mutations, Seiberg duality, and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quiver%20mutations,%20Seiberg%20duality,%20and%20machine%20learning&rft.jtitle=Physical%20review.%20D&rft.au=Bao,%20Jiakang&rft.date=2020-10-15&rft.volume=102&rft.issue=8&rft.artnum=086013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.086013&rft_dat=%3Cproquest_cross%3E2469844411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469844411&rft_id=info:pmid/&rfr_iscdi=true |