Probing noncommutative gravity with gravitational wave and binary pulsar observations

Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated from a quantum gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-10, Vol.102 (8), Article 084022
Hauptverfasser: Jenks, Leah, Yagi, Kent, Alexander, Stephon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 102
creator Jenks, Leah
Yagi, Kent
Alexander, Stephon
description Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated from a quantum gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommutativity, (ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) considering binary pulsar observations. Using Kepler's law that contains the noncommutative effect at second post-Newtonian order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the noncommutative tensor normalized by the Planck length and time is constrained to be of order unity.
doi_str_mv 10.1103/PhysRevD.102.084022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469844362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469844362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c3ed15ef42d0dfaefc154a20d06cdfc58d26cbf5554cff5057d1a97321dc84643</originalsourceid><addsrcrecordid>eNo9UMtKA0EQHETBEPMFXgY8b-x57eMo8QkBg5jzMDuPZEOyE2d2N-TvHU301NVd1UVRCN0SmBIC7H6xPsYPOzxOCdAplBwovUAjygvIAGh1-Y8JXKNJjBtIMIeqIGSElovg66Zd4da32u92fae6ZrB4FdTQdEd8aLr1eUmEb9UWH1TiVWtw-lPhiPf9NqqAfR1tGH5F8QZdObWNdnKeY7R8fvqcvWbz95e32cM807Qoukwza4iwjlMDxinrNBFcUTCQa-O0KA3Nde2EEFw7J0AUhqiqYJQYXfKcszG6O_nug__qbezkxvchhYyS8rwqOWc5TSp2UungYwzWyX1odim6JCB_KpR_FaYDlacK2Tf8umhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469844362</pqid></control><display><type>article</type><title>Probing noncommutative gravity with gravitational wave and binary pulsar observations</title><source>American Physical Society Journals</source><creator>Jenks, Leah ; Yagi, Kent ; Alexander, Stephon</creator><creatorcontrib>Jenks, Leah ; Yagi, Kent ; Alexander, Stephon</creatorcontrib><description>Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated from a quantum gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommutativity, (ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) considering binary pulsar observations. Using Kepler's law that contains the noncommutative effect at second post-Newtonian order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the noncommutative tensor normalized by the Planck length and time is constrained to be of order unity.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.084022</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Counting ; Gravitational waves ; Kepler laws ; Mathematical analysis ; Pulsars ; Quantum gravity ; Relativity ; Spacetime ; Tensors ; Waveforms</subject><ispartof>Physical review. D, 2020-10, Vol.102 (8), Article 084022</ispartof><rights>Copyright American Physical Society Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-c3ed15ef42d0dfaefc154a20d06cdfc58d26cbf5554cff5057d1a97321dc84643</citedby><cites>FETCH-LOGICAL-c277t-c3ed15ef42d0dfaefc154a20d06cdfc58d26cbf5554cff5057d1a97321dc84643</cites><orcidid>0000-0002-9212-2034 ; 0000-0002-0642-5363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Jenks, Leah</creatorcontrib><creatorcontrib>Yagi, Kent</creatorcontrib><creatorcontrib>Alexander, Stephon</creatorcontrib><title>Probing noncommutative gravity with gravitational wave and binary pulsar observations</title><title>Physical review. D</title><description>Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated from a quantum gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommutativity, (ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) considering binary pulsar observations. Using Kepler's law that contains the noncommutative effect at second post-Newtonian order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the noncommutative tensor normalized by the Planck length and time is constrained to be of order unity.</description><subject>Black holes</subject><subject>Counting</subject><subject>Gravitational waves</subject><subject>Kepler laws</subject><subject>Mathematical analysis</subject><subject>Pulsars</subject><subject>Quantum gravity</subject><subject>Relativity</subject><subject>Spacetime</subject><subject>Tensors</subject><subject>Waveforms</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKA0EQHETBEPMFXgY8b-x57eMo8QkBg5jzMDuPZEOyE2d2N-TvHU301NVd1UVRCN0SmBIC7H6xPsYPOzxOCdAplBwovUAjygvIAGh1-Y8JXKNJjBtIMIeqIGSElovg66Zd4da32u92fae6ZrB4FdTQdEd8aLr1eUmEb9UWH1TiVWtw-lPhiPf9NqqAfR1tGH5F8QZdObWNdnKeY7R8fvqcvWbz95e32cM807Qoukwza4iwjlMDxinrNBFcUTCQa-O0KA3Nde2EEFw7J0AUhqiqYJQYXfKcszG6O_nug__qbezkxvchhYyS8rwqOWc5TSp2UungYwzWyX1odim6JCB_KpR_FaYDlacK2Tf8umhk</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Jenks, Leah</creator><creator>Yagi, Kent</creator><creator>Alexander, Stephon</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9212-2034</orcidid><orcidid>https://orcid.org/0000-0002-0642-5363</orcidid></search><sort><creationdate>20201009</creationdate><title>Probing noncommutative gravity with gravitational wave and binary pulsar observations</title><author>Jenks, Leah ; Yagi, Kent ; Alexander, Stephon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c3ed15ef42d0dfaefc154a20d06cdfc58d26cbf5554cff5057d1a97321dc84643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Counting</topic><topic>Gravitational waves</topic><topic>Kepler laws</topic><topic>Mathematical analysis</topic><topic>Pulsars</topic><topic>Quantum gravity</topic><topic>Relativity</topic><topic>Spacetime</topic><topic>Tensors</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenks, Leah</creatorcontrib><creatorcontrib>Yagi, Kent</creatorcontrib><creatorcontrib>Alexander, Stephon</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenks, Leah</au><au>Yagi, Kent</au><au>Alexander, Stephon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing noncommutative gravity with gravitational wave and binary pulsar observations</atitle><jtitle>Physical review. D</jtitle><date>2020-10-09</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><artnum>084022</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated from a quantum gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommutativity, (ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) considering binary pulsar observations. Using Kepler's law that contains the noncommutative effect at second post-Newtonian order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the noncommutative tensor normalized by the Planck length and time is constrained to be of order unity.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.084022</doi><orcidid>https://orcid.org/0000-0002-9212-2034</orcidid><orcidid>https://orcid.org/0000-0002-0642-5363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-10, Vol.102 (8), Article 084022
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2469844362
source American Physical Society Journals
subjects Black holes
Counting
Gravitational waves
Kepler laws
Mathematical analysis
Pulsars
Quantum gravity
Relativity
Spacetime
Tensors
Waveforms
title Probing noncommutative gravity with gravitational wave and binary pulsar observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20noncommutative%20gravity%20with%20gravitational%20wave%20and%20binary%20pulsar%20observations&rft.jtitle=Physical%20review.%20D&rft.au=Jenks,%20Leah&rft.date=2020-10-09&rft.volume=102&rft.issue=8&rft.artnum=084022&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.084022&rft_dat=%3Cproquest_cross%3E2469844362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469844362&rft_id=info:pmid/&rfr_iscdi=true