Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium

Nano-sized Co3O4–MoS2/Ni foam heterostructure electrodes were fabricated using a vacuum kinetic spray technique with microparticles of Co3O4 and MoS2. The deposited films were utilized to study the oxygen evolution reaction (OER) at various MoS2 contents (25, 50, 75 wt.%). The surface state of the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-02, Vol.853, p.156946, Article 156946
Hauptverfasser: Abd-Elrahim, A.G., Chun, Doo-Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 156946
container_title Journal of alloys and compounds
container_volume 853
creator Abd-Elrahim, A.G.
Chun, Doo-Man
description Nano-sized Co3O4–MoS2/Ni foam heterostructure electrodes were fabricated using a vacuum kinetic spray technique with microparticles of Co3O4 and MoS2. The deposited films were utilized to study the oxygen evolution reaction (OER) at various MoS2 contents (25, 50, 75 wt.%). The surface state of the obtained heterostructure electrodes was characterized using various surfaces sensitive techniques such as scanning electron microscopy (SEM), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). SEM images exhibited the fragmentation of the microparticles to smaller sizes in the nanoscale range. An analysis of the XPS spectra revealed the improvement in the cumulative synergy between the nanostructured Co3O4 and MoS2 in the heterostructured Co3O4–MoS2 electrocatalyst. We found that the gradual addition of MoS2 caused an enhancement in the OER activity due to improved charge transfer kinetics. Moreover, the heterostructure electrode with 75 wt.% MoS2 showed the highest activity with the lowest OER overpotential value of 298 mV at 10 mA··cm−2 and the smallest Tafel slope value of 46 mV·dec−1, as well as, 50 h OER stability at a current density of 50 mA·cm−2. •Co3O4–MoS2 heterostructure electrodes were fabricated by vacuum kinetic spraying.•Co3O4–MoS2 electrocatalyst revealed high OER activity with 298 mV@10 mA·cm−2.•Co3O4–MoS2 electrocatalyst exhibited a very low Tafel slope of 46 mV·dec−1.
doi_str_mv 10.1016/j.jallcom.2020.156946
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469843021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820333107</els_id><sourcerecordid>2469843021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-bc16bf8fdfdf886b1434e3c28ac715f300b6fe4dbf03b34d876570789054f693</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4MouK4-ghDw3DVp0jQ9iSx-gboH9x7adLKmto0m7aKefAff0Ccx6-5dZmCGYb7-P4ROKZlRQsV5M2vKttWum6UkjbVMFFzsoQmVOUu4EMU-mpAizRLJpDxERyE0hBBaMDpB4bHsXbCfUOO5Ywv-8_X94J5S_AwDeBcGP-ph9IChBT14V0PAxnlsu1fv1rZf4eEZsHv_WEGPYe3acbCuxx5K_ZfYHpfR25eytT3gDmo7dsfowJRtgJNdnKLl9dVyfpvcL27u5pf3iWYsH5JKU1EZaepoUoqKcsaB6VSWOqeZYYRUwgCvK0NYxXgtc5HlJJcFybgRBZuis-3a-OrbCGFQjRt9Hy-qlItCckZSGruybZeOcoMHo1697Ur_oShRG7yqUTu8aoNXbfHGuYvtHEQFawteBW2h11Ghj6hU7ew_G34Bt9WI4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469843021</pqid></control><display><type>article</type><title>Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium</title><source>Elsevier ScienceDirect Journals</source><creator>Abd-Elrahim, A.G. ; Chun, Doo-Man</creator><creatorcontrib>Abd-Elrahim, A.G. ; Chun, Doo-Man</creatorcontrib><description>Nano-sized Co3O4–MoS2/Ni foam heterostructure electrodes were fabricated using a vacuum kinetic spray technique with microparticles of Co3O4 and MoS2. The deposited films were utilized to study the oxygen evolution reaction (OER) at various MoS2 contents (25, 50, 75 wt.%). The surface state of the obtained heterostructure electrodes was characterized using various surfaces sensitive techniques such as scanning electron microscopy (SEM), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). SEM images exhibited the fragmentation of the microparticles to smaller sizes in the nanoscale range. An analysis of the XPS spectra revealed the improvement in the cumulative synergy between the nanostructured Co3O4 and MoS2 in the heterostructured Co3O4–MoS2 electrocatalyst. We found that the gradual addition of MoS2 caused an enhancement in the OER activity due to improved charge transfer kinetics. Moreover, the heterostructure electrode with 75 wt.% MoS2 showed the highest activity with the lowest OER overpotential value of 298 mV at 10 mA··cm−2 and the smallest Tafel slope value of 46 mV·dec−1, as well as, 50 h OER stability at a current density of 50 mA·cm−2. •Co3O4–MoS2 heterostructure electrodes were fabricated by vacuum kinetic spraying.•Co3O4–MoS2 electrocatalyst revealed high OER activity with 298 mV@10 mA·cm−2.•Co3O4–MoS2 electrocatalyst exhibited a very low Tafel slope of 46 mV·dec−1.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156946</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Charge transfer ; Co3O4–MoS2 composite ; Cobalt oxides ; Electrocatalysts ; Electrodes ; Heterostructure electrodes ; Heterostructures ; Metal foams ; Microparticles ; Molybdenum disulfide ; Nanoparticle deposition system (NPDS) ; Oxygen evolution reaction (OER) ; Oxygen evolution reactions ; Photoelectrons ; Raman spectroscopy ; Scanning electron microscopy ; Spectrum analysis ; X ray photoelectron spectroscopy</subject><ispartof>Journal of alloys and compounds, 2021-02, Vol.853, p.156946, Article 156946</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-bc16bf8fdfdf886b1434e3c28ac715f300b6fe4dbf03b34d876570789054f693</citedby><cites>FETCH-LOGICAL-c337t-bc16bf8fdfdf886b1434e3c28ac715f300b6fe4dbf03b34d876570789054f693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820333107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Abd-Elrahim, A.G.</creatorcontrib><creatorcontrib>Chun, Doo-Man</creatorcontrib><title>Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium</title><title>Journal of alloys and compounds</title><description>Nano-sized Co3O4–MoS2/Ni foam heterostructure electrodes were fabricated using a vacuum kinetic spray technique with microparticles of Co3O4 and MoS2. The deposited films were utilized to study the oxygen evolution reaction (OER) at various MoS2 contents (25, 50, 75 wt.%). The surface state of the obtained heterostructure electrodes was characterized using various surfaces sensitive techniques such as scanning electron microscopy (SEM), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). SEM images exhibited the fragmentation of the microparticles to smaller sizes in the nanoscale range. An analysis of the XPS spectra revealed the improvement in the cumulative synergy between the nanostructured Co3O4 and MoS2 in the heterostructured Co3O4–MoS2 electrocatalyst. We found that the gradual addition of MoS2 caused an enhancement in the OER activity due to improved charge transfer kinetics. Moreover, the heterostructure electrode with 75 wt.% MoS2 showed the highest activity with the lowest OER overpotential value of 298 mV at 10 mA··cm−2 and the smallest Tafel slope value of 46 mV·dec−1, as well as, 50 h OER stability at a current density of 50 mA·cm−2. •Co3O4–MoS2 heterostructure electrodes were fabricated by vacuum kinetic spraying.•Co3O4–MoS2 electrocatalyst revealed high OER activity with 298 mV@10 mA·cm−2.•Co3O4–MoS2 electrocatalyst exhibited a very low Tafel slope of 46 mV·dec−1.</description><subject>Charge transfer</subject><subject>Co3O4–MoS2 composite</subject><subject>Cobalt oxides</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Heterostructure electrodes</subject><subject>Heterostructures</subject><subject>Metal foams</subject><subject>Microparticles</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticle deposition system (NPDS)</subject><subject>Oxygen evolution reaction (OER)</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrons</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAQx4MouK4-ghDw3DVp0jQ9iSx-gboH9x7adLKmto0m7aKefAff0Ccx6-5dZmCGYb7-P4ROKZlRQsV5M2vKttWum6UkjbVMFFzsoQmVOUu4EMU-mpAizRLJpDxERyE0hBBaMDpB4bHsXbCfUOO5Ywv-8_X94J5S_AwDeBcGP-ph9IChBT14V0PAxnlsu1fv1rZf4eEZsHv_WEGPYe3acbCuxx5K_ZfYHpfR25eytT3gDmo7dsfowJRtgJNdnKLl9dVyfpvcL27u5pf3iWYsH5JKU1EZaepoUoqKcsaB6VSWOqeZYYRUwgCvK0NYxXgtc5HlJJcFybgRBZuis-3a-OrbCGFQjRt9Hy-qlItCckZSGruybZeOcoMHo1697Ur_oShRG7yqUTu8aoNXbfHGuYvtHEQFawteBW2h11Ghj6hU7ew_G34Bt9WI4g</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Abd-Elrahim, A.G.</creator><creator>Chun, Doo-Man</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210205</creationdate><title>Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium</title><author>Abd-Elrahim, A.G. ; Chun, Doo-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-bc16bf8fdfdf886b1434e3c28ac715f300b6fe4dbf03b34d876570789054f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Co3O4–MoS2 composite</topic><topic>Cobalt oxides</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Heterostructure electrodes</topic><topic>Heterostructures</topic><topic>Metal foams</topic><topic>Microparticles</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticle deposition system (NPDS)</topic><topic>Oxygen evolution reaction (OER)</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrons</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abd-Elrahim, A.G.</creatorcontrib><creatorcontrib>Chun, Doo-Man</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abd-Elrahim, A.G.</au><au>Chun, Doo-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-02-05</date><risdate>2021</risdate><volume>853</volume><spage>156946</spage><pages>156946-</pages><artnum>156946</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Nano-sized Co3O4–MoS2/Ni foam heterostructure electrodes were fabricated using a vacuum kinetic spray technique with microparticles of Co3O4 and MoS2. The deposited films were utilized to study the oxygen evolution reaction (OER) at various MoS2 contents (25, 50, 75 wt.%). The surface state of the obtained heterostructure electrodes was characterized using various surfaces sensitive techniques such as scanning electron microscopy (SEM), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). SEM images exhibited the fragmentation of the microparticles to smaller sizes in the nanoscale range. An analysis of the XPS spectra revealed the improvement in the cumulative synergy between the nanostructured Co3O4 and MoS2 in the heterostructured Co3O4–MoS2 electrocatalyst. We found that the gradual addition of MoS2 caused an enhancement in the OER activity due to improved charge transfer kinetics. Moreover, the heterostructure electrode with 75 wt.% MoS2 showed the highest activity with the lowest OER overpotential value of 298 mV at 10 mA··cm−2 and the smallest Tafel slope value of 46 mV·dec−1, as well as, 50 h OER stability at a current density of 50 mA·cm−2. •Co3O4–MoS2 heterostructure electrodes were fabricated by vacuum kinetic spraying.•Co3O4–MoS2 electrocatalyst revealed high OER activity with 298 mV@10 mA·cm−2.•Co3O4–MoS2 electrocatalyst exhibited a very low Tafel slope of 46 mV·dec−1.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156946</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-02, Vol.853, p.156946, Article 156946
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2469843021
source Elsevier ScienceDirect Journals
subjects Charge transfer
Co3O4–MoS2 composite
Cobalt oxides
Electrocatalysts
Electrodes
Heterostructure electrodes
Heterostructures
Metal foams
Microparticles
Molybdenum disulfide
Nanoparticle deposition system (NPDS)
Oxygen evolution reaction (OER)
Oxygen evolution reactions
Photoelectrons
Raman spectroscopy
Scanning electron microscopy
Spectrum analysis
X ray photoelectron spectroscopy
title Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosized%20Co3O4%E2%80%93MoS2%20heterostructure%20electrodes%20for%20improving%20the%20oxygen%20evolution%20reaction%20in%20an%20alkaline%20medium&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Abd-Elrahim,%20A.G.&rft.date=2021-02-05&rft.volume=853&rft.spage=156946&rft.pages=156946-&rft.artnum=156946&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156946&rft_dat=%3Cproquest_cross%3E2469843021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469843021&rft_id=info:pmid/&rft_els_id=S0925838820333107&rfr_iscdi=true