Mechanism of transition to detonation in unconfined volumes

The paper is aimed at numerical study of one of the most hazardous events at a launch place: open space explosion of fuel air mixtures due to accidental loss of containments. A mechanism of transition to detonation in the process of unconfined flame propagation is proposed. It is shown that the deto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2020-11, Vol.176, p.647-652
Hauptverfasser: Kiverin, Alexey, Yakovenko, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue
container_start_page 647
container_title Acta astronautica
container_volume 176
creator Kiverin, Alexey
Yakovenko, Ivan
description The paper is aimed at numerical study of one of the most hazardous events at a launch place: open space explosion of fuel air mixtures due to accidental loss of containments. A mechanism of transition to detonation in the process of unconfined flame propagation is proposed. It is shown that the detonation onset takes place as a result of local exponential growth of unstable short-wavelength perturbations. Exactly the same mechanism is known to be responsible for the self-similar flame acceleration, however the detonation can arise only in the case of extremely high reaction rate. High reaction rate defines a coupling of the accelerating flamelets with diverging shock waves that leads to the detonation onset. •Deflagration-to-detonation transition (DDT) in unconfined volume is studied.•The mechanism of DDT is related to the flame instability development.•The rise of flame surface disturbances leads to the shock waves generation.•Local compression coupled with flame sheet acceleration causes detonation onset.
doi_str_mv 10.1016/j.actaastro.2020.02.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469842922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576520300758</els_id><sourcerecordid>2469842922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-665c03eede64329501d88accc70a84ac07a144047060f1f710c50b6da3b164a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKu_wQHXM948JpnBVSm-oOKm-5Bm7mCGNqlJpuC_d2rFravDhXPO5XyE3FKoKFB5P1TGZmNSjqFiwKACVgHlZ2RGG9WWDDickxlAK8payfqSXKU0AIBiTTsjD29oP4x3aVeEvsjR-OSyC77IoegwB29-LueL0dvge-exKw5hO-4wXZOL3mwT3vzqnKyfHtfLl3L1_vy6XKxKywXPpZS1BY7YoRSctTXQrmmMtVaBaYSxoAwVAoQCCT3tFQVbw0Z2hm-oFIbPyd2pdh_D54gp6yGM0U8fNROybQRrGZtc6uSyMaQUsdf76HYmfmkK-ghKD_oPlD6C0sD0BGpKLk5JnDYcHEadrENvsXMRbdZdcP92fANRKnVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469842922</pqid></control><display><type>article</type><title>Mechanism of transition to detonation in unconfined volumes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kiverin, Alexey ; Yakovenko, Ivan</creator><creatorcontrib>Kiverin, Alexey ; Yakovenko, Ivan</creatorcontrib><description>The paper is aimed at numerical study of one of the most hazardous events at a launch place: open space explosion of fuel air mixtures due to accidental loss of containments. A mechanism of transition to detonation in the process of unconfined flame propagation is proposed. It is shown that the detonation onset takes place as a result of local exponential growth of unstable short-wavelength perturbations. Exactly the same mechanism is known to be responsible for the self-similar flame acceleration, however the detonation can arise only in the case of extremely high reaction rate. High reaction rate defines a coupling of the accelerating flamelets with diverging shock waves that leads to the detonation onset. •Deflagration-to-detonation transition (DDT) in unconfined volume is studied.•The mechanism of DDT is related to the flame instability development.•The rise of flame surface disturbances leads to the shock waves generation.•Local compression coupled with flame sheet acceleration causes detonation onset.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2020.02.013</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Acceleration ; Deflagration-to-detonation transition ; Detonation ; Flame propagation ; Gaseous explosions ; Self-similarity ; Shock waves ; Unconfined flames</subject><ispartof>Acta astronautica, 2020-11, Vol.176, p.647-652</ispartof><rights>2020 IAA</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-665c03eede64329501d88accc70a84ac07a144047060f1f710c50b6da3b164a3</citedby><cites>FETCH-LOGICAL-c343t-665c03eede64329501d88accc70a84ac07a144047060f1f710c50b6da3b164a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2020.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kiverin, Alexey</creatorcontrib><creatorcontrib>Yakovenko, Ivan</creatorcontrib><title>Mechanism of transition to detonation in unconfined volumes</title><title>Acta astronautica</title><description>The paper is aimed at numerical study of one of the most hazardous events at a launch place: open space explosion of fuel air mixtures due to accidental loss of containments. A mechanism of transition to detonation in the process of unconfined flame propagation is proposed. It is shown that the detonation onset takes place as a result of local exponential growth of unstable short-wavelength perturbations. Exactly the same mechanism is known to be responsible for the self-similar flame acceleration, however the detonation can arise only in the case of extremely high reaction rate. High reaction rate defines a coupling of the accelerating flamelets with diverging shock waves that leads to the detonation onset. •Deflagration-to-detonation transition (DDT) in unconfined volume is studied.•The mechanism of DDT is related to the flame instability development.•The rise of flame surface disturbances leads to the shock waves generation.•Local compression coupled with flame sheet acceleration causes detonation onset.</description><subject>Acceleration</subject><subject>Deflagration-to-detonation transition</subject><subject>Detonation</subject><subject>Flame propagation</subject><subject>Gaseous explosions</subject><subject>Self-similarity</subject><subject>Shock waves</subject><subject>Unconfined flames</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKu_wQHXM948JpnBVSm-oOKm-5Bm7mCGNqlJpuC_d2rFravDhXPO5XyE3FKoKFB5P1TGZmNSjqFiwKACVgHlZ2RGG9WWDDickxlAK8payfqSXKU0AIBiTTsjD29oP4x3aVeEvsjR-OSyC77IoegwB29-LueL0dvge-exKw5hO-4wXZOL3mwT3vzqnKyfHtfLl3L1_vy6XKxKywXPpZS1BY7YoRSctTXQrmmMtVaBaYSxoAwVAoQCCT3tFQVbw0Z2hm-oFIbPyd2pdh_D54gp6yGM0U8fNROybQRrGZtc6uSyMaQUsdf76HYmfmkK-ghKD_oPlD6C0sD0BGpKLk5JnDYcHEadrENvsXMRbdZdcP92fANRKnVU</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Kiverin, Alexey</creator><creator>Yakovenko, Ivan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>202011</creationdate><title>Mechanism of transition to detonation in unconfined volumes</title><author>Kiverin, Alexey ; Yakovenko, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-665c03eede64329501d88accc70a84ac07a144047060f1f710c50b6da3b164a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Deflagration-to-detonation transition</topic><topic>Detonation</topic><topic>Flame propagation</topic><topic>Gaseous explosions</topic><topic>Self-similarity</topic><topic>Shock waves</topic><topic>Unconfined flames</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiverin, Alexey</creatorcontrib><creatorcontrib>Yakovenko, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiverin, Alexey</au><au>Yakovenko, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of transition to detonation in unconfined volumes</atitle><jtitle>Acta astronautica</jtitle><date>2020-11</date><risdate>2020</risdate><volume>176</volume><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The paper is aimed at numerical study of one of the most hazardous events at a launch place: open space explosion of fuel air mixtures due to accidental loss of containments. A mechanism of transition to detonation in the process of unconfined flame propagation is proposed. It is shown that the detonation onset takes place as a result of local exponential growth of unstable short-wavelength perturbations. Exactly the same mechanism is known to be responsible for the self-similar flame acceleration, however the detonation can arise only in the case of extremely high reaction rate. High reaction rate defines a coupling of the accelerating flamelets with diverging shock waves that leads to the detonation onset. •Deflagration-to-detonation transition (DDT) in unconfined volume is studied.•The mechanism of DDT is related to the flame instability development.•The rise of flame surface disturbances leads to the shock waves generation.•Local compression coupled with flame sheet acceleration causes detonation onset.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2020.02.013</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2020-11, Vol.176, p.647-652
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2469842922
source Access via ScienceDirect (Elsevier)
subjects Acceleration
Deflagration-to-detonation transition
Detonation
Flame propagation
Gaseous explosions
Self-similarity
Shock waves
Unconfined flames
title Mechanism of transition to detonation in unconfined volumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20transition%20to%20detonation%20in%20unconfined%20volumes&rft.jtitle=Acta%20astronautica&rft.au=Kiverin,%20Alexey&rft.date=2020-11&rft.volume=176&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2020.02.013&rft_dat=%3Cproquest_cross%3E2469842922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469842922&rft_id=info:pmid/&rft_els_id=S0094576520300758&rfr_iscdi=true