Discrimination of oils and fuels using a portable NIR spectrometer

[Display omitted] •Portable NIR spectrometer was used to discriminate crude oils from used motor oils.•PLS-DA model discriminated crude oils with precision over 94%.•Naphtha was quantified in gasoline with LOD of 4.4 wt%.•Diesel was quantified in kerosene with LOD of 9.3 wt%. Improper mixtures of: m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-01, Vol.283, p.118854, Article 118854
Hauptverfasser: Santos, Francine D., Santos, Layla P., Cunha, Pedro H.P., Borghi, Flávia T., Romão, Wanderson, de Castro, Eustáquio V.R., de Oliveira, Elcio C., Filgueiras, Paulo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118854
container_title Fuel (Guildford)
container_volume 283
creator Santos, Francine D.
Santos, Layla P.
Cunha, Pedro H.P.
Borghi, Flávia T.
Romão, Wanderson
de Castro, Eustáquio V.R.
de Oliveira, Elcio C.
Filgueiras, Paulo R.
description [Display omitted] •Portable NIR spectrometer was used to discriminate crude oils from used motor oils.•PLS-DA model discriminated crude oils with precision over 94%.•Naphtha was quantified in gasoline with LOD of 4.4 wt%.•Diesel was quantified in kerosene with LOD of 9.3 wt%. Improper mixtures of: motor oil with crude oil; and derivatives mixed with other derivatives of lesser commercial value were identified in Brazil by companies in the energy sector. This study shows the great response that a portable NIR spectrometer had to discriminate crude oils and derivatives and to quantify them in blends (crude oils with used motor oil; and naphtha, gasoline, diesel, and kerosene). NIR spectra set were acquired in triplicate using a microNIR™ portable spectrometer, where it was possible to discriminate crude oil from used motor oil with 100% sensitivity, specificity, and precision. Regression models can quantify the oil content of a ternary mixture containing two crude oils (light and heavy oil) and a used motor oil with root mean square error of prediction (RMSEP) of 6.2 and 4.8 wt%, and R2p = 0.9871 and 0.9870 for support vector regression (SVR) and partial least squares (PLS), respectively. About the NIR spectra of naphtha, gasoline, diesel, and kerosene, partial least squares discriminant analysis (PLS-DA) allows the identification of any of these products with sensitivity, specificity, and precision of 100%. For the blends of gasoline and naphtha, the limit of detection (LOD), limit of quantification (LOQ), and RMSEP were 1.3, 4.4, and 1.4 wt%, respectively. Likewise, for diesel and kerosene blends, the PLS model allows the identification of the diesel with LOD, LOQ, and RMSEP of 2.8 wt%, 9.3 wt%, and 11.4 wt%, respectively.
doi_str_mv 10.1016/j.fuel.2020.118854
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469842916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120318500</els_id><sourcerecordid>2469842916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6aabc1cfcd6fb07015564e2f3c118095caef9e3fa99328a23c4b8f446e7c59ae3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB1x3zatqCGx1fA4OC6Dqk6Y2kdJqatIL_3pS6dnXhcs659zsIXVKyoYTK63ZjJ-g2jLC0oGWZiyO0omXBs4Lm_BitSFJljEt6is5ibAkhRRKt0N29iya4g-v16HyPvcXedRHrvsFzZMRTdP0n1njwYdR1B_hl94bjAGYM_gAjhHN0YnUX4eJvrtHH48P79jnbvz7ttrf7zPCCjZnUujbUWNNIW5OC0DyXApjlJj1MqtxosBVwq6uKs1IzbkRdWiEkFCavNPA1ulpyh-C_Joijav0U-nRSMSGrUrCKyqRii8oEH2MAq4aEp8OPokTNXalWzWBq7kotXSXTzWJKwPDtIKhoHPQGGhcSqGq8-8_-C7uccko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469842916</pqid></control><display><type>article</type><title>Discrimination of oils and fuels using a portable NIR spectrometer</title><source>Elsevier ScienceDirect Journals</source><creator>Santos, Francine D. ; Santos, Layla P. ; Cunha, Pedro H.P. ; Borghi, Flávia T. ; Romão, Wanderson ; de Castro, Eustáquio V.R. ; de Oliveira, Elcio C. ; Filgueiras, Paulo R.</creator><creatorcontrib>Santos, Francine D. ; Santos, Layla P. ; Cunha, Pedro H.P. ; Borghi, Flávia T. ; Romão, Wanderson ; de Castro, Eustáquio V.R. ; de Oliveira, Elcio C. ; Filgueiras, Paulo R.</creatorcontrib><description>[Display omitted] •Portable NIR spectrometer was used to discriminate crude oils from used motor oils.•PLS-DA model discriminated crude oils with precision over 94%.•Naphtha was quantified in gasoline with LOD of 4.4 wt%.•Diesel was quantified in kerosene with LOD of 9.3 wt%. Improper mixtures of: motor oil with crude oil; and derivatives mixed with other derivatives of lesser commercial value were identified in Brazil by companies in the energy sector. This study shows the great response that a portable NIR spectrometer had to discriminate crude oils and derivatives and to quantify them in blends (crude oils with used motor oil; and naphtha, gasoline, diesel, and kerosene). NIR spectra set were acquired in triplicate using a microNIR™ portable spectrometer, where it was possible to discriminate crude oil from used motor oil with 100% sensitivity, specificity, and precision. Regression models can quantify the oil content of a ternary mixture containing two crude oils (light and heavy oil) and a used motor oil with root mean square error of prediction (RMSEP) of 6.2 and 4.8 wt%, and R2p = 0.9871 and 0.9870 for support vector regression (SVR) and partial least squares (PLS), respectively. About the NIR spectra of naphtha, gasoline, diesel, and kerosene, partial least squares discriminant analysis (PLS-DA) allows the identification of any of these products with sensitivity, specificity, and precision of 100%. For the blends of gasoline and naphtha, the limit of detection (LOD), limit of quantification (LOQ), and RMSEP were 1.3, 4.4, and 1.4 wt%, respectively. Likewise, for diesel and kerosene blends, the PLS model allows the identification of the diesel with LOD, LOQ, and RMSEP of 2.8 wt%, 9.3 wt%, and 11.4 wt%, respectively.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.118854</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemometrics ; Crude oil ; Derivatives ; Diesel ; Diesel fuels ; Discriminant analysis ; Fuels ; Gasoline ; Kerosene ; Least squares ; Mixtures ; Naphtha ; NIR portable ; Portability ; Regression analysis ; Regression models ; Sensitivity ; Support vector machines</subject><ispartof>Fuel (Guildford), 2021-01, Vol.283, p.118854, Article 118854</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6aabc1cfcd6fb07015564e2f3c118095caef9e3fa99328a23c4b8f446e7c59ae3</citedby><cites>FETCH-LOGICAL-c372t-6aabc1cfcd6fb07015564e2f3c118095caef9e3fa99328a23c4b8f446e7c59ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236120318500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Santos, Francine D.</creatorcontrib><creatorcontrib>Santos, Layla P.</creatorcontrib><creatorcontrib>Cunha, Pedro H.P.</creatorcontrib><creatorcontrib>Borghi, Flávia T.</creatorcontrib><creatorcontrib>Romão, Wanderson</creatorcontrib><creatorcontrib>de Castro, Eustáquio V.R.</creatorcontrib><creatorcontrib>de Oliveira, Elcio C.</creatorcontrib><creatorcontrib>Filgueiras, Paulo R.</creatorcontrib><title>Discrimination of oils and fuels using a portable NIR spectrometer</title><title>Fuel (Guildford)</title><description>[Display omitted] •Portable NIR spectrometer was used to discriminate crude oils from used motor oils.•PLS-DA model discriminated crude oils with precision over 94%.•Naphtha was quantified in gasoline with LOD of 4.4 wt%.•Diesel was quantified in kerosene with LOD of 9.3 wt%. Improper mixtures of: motor oil with crude oil; and derivatives mixed with other derivatives of lesser commercial value were identified in Brazil by companies in the energy sector. This study shows the great response that a portable NIR spectrometer had to discriminate crude oils and derivatives and to quantify them in blends (crude oils with used motor oil; and naphtha, gasoline, diesel, and kerosene). NIR spectra set were acquired in triplicate using a microNIR™ portable spectrometer, where it was possible to discriminate crude oil from used motor oil with 100% sensitivity, specificity, and precision. Regression models can quantify the oil content of a ternary mixture containing two crude oils (light and heavy oil) and a used motor oil with root mean square error of prediction (RMSEP) of 6.2 and 4.8 wt%, and R2p = 0.9871 and 0.9870 for support vector regression (SVR) and partial least squares (PLS), respectively. About the NIR spectra of naphtha, gasoline, diesel, and kerosene, partial least squares discriminant analysis (PLS-DA) allows the identification of any of these products with sensitivity, specificity, and precision of 100%. For the blends of gasoline and naphtha, the limit of detection (LOD), limit of quantification (LOQ), and RMSEP were 1.3, 4.4, and 1.4 wt%, respectively. Likewise, for diesel and kerosene blends, the PLS model allows the identification of the diesel with LOD, LOQ, and RMSEP of 2.8 wt%, 9.3 wt%, and 11.4 wt%, respectively.</description><subject>Chemometrics</subject><subject>Crude oil</subject><subject>Derivatives</subject><subject>Diesel</subject><subject>Diesel fuels</subject><subject>Discriminant analysis</subject><subject>Fuels</subject><subject>Gasoline</subject><subject>Kerosene</subject><subject>Least squares</subject><subject>Mixtures</subject><subject>Naphtha</subject><subject>NIR portable</subject><subject>Portability</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sensitivity</subject><subject>Support vector machines</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB1x3zatqCGx1fA4OC6Dqk6Y2kdJqatIL_3pS6dnXhcs659zsIXVKyoYTK63ZjJ-g2jLC0oGWZiyO0omXBs4Lm_BitSFJljEt6is5ibAkhRRKt0N29iya4g-v16HyPvcXedRHrvsFzZMRTdP0n1njwYdR1B_hl94bjAGYM_gAjhHN0YnUX4eJvrtHH48P79jnbvz7ttrf7zPCCjZnUujbUWNNIW5OC0DyXApjlJj1MqtxosBVwq6uKs1IzbkRdWiEkFCavNPA1ulpyh-C_Joijav0U-nRSMSGrUrCKyqRii8oEH2MAq4aEp8OPokTNXalWzWBq7kotXSXTzWJKwPDtIKhoHPQGGhcSqGq8-8_-C7uccko</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Santos, Francine D.</creator><creator>Santos, Layla P.</creator><creator>Cunha, Pedro H.P.</creator><creator>Borghi, Flávia T.</creator><creator>Romão, Wanderson</creator><creator>de Castro, Eustáquio V.R.</creator><creator>de Oliveira, Elcio C.</creator><creator>Filgueiras, Paulo R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210101</creationdate><title>Discrimination of oils and fuels using a portable NIR spectrometer</title><author>Santos, Francine D. ; Santos, Layla P. ; Cunha, Pedro H.P. ; Borghi, Flávia T. ; Romão, Wanderson ; de Castro, Eustáquio V.R. ; de Oliveira, Elcio C. ; Filgueiras, Paulo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6aabc1cfcd6fb07015564e2f3c118095caef9e3fa99328a23c4b8f446e7c59ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemometrics</topic><topic>Crude oil</topic><topic>Derivatives</topic><topic>Diesel</topic><topic>Diesel fuels</topic><topic>Discriminant analysis</topic><topic>Fuels</topic><topic>Gasoline</topic><topic>Kerosene</topic><topic>Least squares</topic><topic>Mixtures</topic><topic>Naphtha</topic><topic>NIR portable</topic><topic>Portability</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sensitivity</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Francine D.</creatorcontrib><creatorcontrib>Santos, Layla P.</creatorcontrib><creatorcontrib>Cunha, Pedro H.P.</creatorcontrib><creatorcontrib>Borghi, Flávia T.</creatorcontrib><creatorcontrib>Romão, Wanderson</creatorcontrib><creatorcontrib>de Castro, Eustáquio V.R.</creatorcontrib><creatorcontrib>de Oliveira, Elcio C.</creatorcontrib><creatorcontrib>Filgueiras, Paulo R.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Francine D.</au><au>Santos, Layla P.</au><au>Cunha, Pedro H.P.</au><au>Borghi, Flávia T.</au><au>Romão, Wanderson</au><au>de Castro, Eustáquio V.R.</au><au>de Oliveira, Elcio C.</au><au>Filgueiras, Paulo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of oils and fuels using a portable NIR spectrometer</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>283</volume><spage>118854</spage><pages>118854-</pages><artnum>118854</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Portable NIR spectrometer was used to discriminate crude oils from used motor oils.•PLS-DA model discriminated crude oils with precision over 94%.•Naphtha was quantified in gasoline with LOD of 4.4 wt%.•Diesel was quantified in kerosene with LOD of 9.3 wt%. Improper mixtures of: motor oil with crude oil; and derivatives mixed with other derivatives of lesser commercial value were identified in Brazil by companies in the energy sector. This study shows the great response that a portable NIR spectrometer had to discriminate crude oils and derivatives and to quantify them in blends (crude oils with used motor oil; and naphtha, gasoline, diesel, and kerosene). NIR spectra set were acquired in triplicate using a microNIR™ portable spectrometer, where it was possible to discriminate crude oil from used motor oil with 100% sensitivity, specificity, and precision. Regression models can quantify the oil content of a ternary mixture containing two crude oils (light and heavy oil) and a used motor oil with root mean square error of prediction (RMSEP) of 6.2 and 4.8 wt%, and R2p = 0.9871 and 0.9870 for support vector regression (SVR) and partial least squares (PLS), respectively. About the NIR spectra of naphtha, gasoline, diesel, and kerosene, partial least squares discriminant analysis (PLS-DA) allows the identification of any of these products with sensitivity, specificity, and precision of 100%. For the blends of gasoline and naphtha, the limit of detection (LOD), limit of quantification (LOQ), and RMSEP were 1.3, 4.4, and 1.4 wt%, respectively. Likewise, for diesel and kerosene blends, the PLS model allows the identification of the diesel with LOD, LOQ, and RMSEP of 2.8 wt%, 9.3 wt%, and 11.4 wt%, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.118854</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-01, Vol.283, p.118854, Article 118854
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2469842916
source Elsevier ScienceDirect Journals
subjects Chemometrics
Crude oil
Derivatives
Diesel
Diesel fuels
Discriminant analysis
Fuels
Gasoline
Kerosene
Least squares
Mixtures
Naphtha
NIR portable
Portability
Regression analysis
Regression models
Sensitivity
Support vector machines
title Discrimination of oils and fuels using a portable NIR spectrometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20oils%20and%20fuels%20using%20a%20portable%20NIR%20spectrometer&rft.jtitle=Fuel%20(Guildford)&rft.au=Santos,%20Francine%20D.&rft.date=2021-01-01&rft.volume=283&rft.spage=118854&rft.pages=118854-&rft.artnum=118854&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.118854&rft_dat=%3Cproquest_cross%3E2469842916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469842916&rft_id=info:pmid/&rft_els_id=S0016236120318500&rfr_iscdi=true