Alternative Model to Determine the Optimal Government Subsidies in Construction Stage of PPP Rail Transit Projects under Dynamic Uncertainties
Urban rail transit is a quasioperational project and its net cash inflow can hardly cover the investment expenditure. It is essential to determine an acceptable amount of government subsidy to ensure the financial viability of the PPP projects, so as to encourage the entry of the private partner. Th...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Lv, Junna Zhou, Wen Zhang, Yan-ying |
description | Urban rail transit is a quasioperational project and its net cash inflow can hardly cover the investment expenditure. It is essential to determine an acceptable amount of government subsidy to ensure the financial viability of the PPP projects, so as to encourage the entry of the private partner. The partners involved in PPPs have common interests but conflict regarding the value of government subsidy. Considering the uncertainty characteristic by PPPs and information incompleteness in the decision-making process, this study presents a methodology to calculate the equitable subsidy ratio favored by both participants. This study divides the decision process into two steps. First, this study constructs a financial model and introduces an acceptable range of subsidy ratio by using the Monte Carlo simulation method. Second, this study uses the bargaining game theory to determine a particular subsidy ratio under incomplete information. To verify the applicability of the presented model, the researchers invoke an illustrative example for model validation. This research provides a referential and operational method for the government and private sectors to make government subsidy decisions for quasioperational projects. |
doi_str_mv | 10.1155/2020/3928463 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469680149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469680149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1998c19cf981fdb0f520bedb72bf640fa6fb3729c5c0702902f9613dd8686b663</originalsourceid><addsrcrecordid>eNqF0EtLxDAQwPEiCj5vnmXAo1aTtE2bo-z6AsXFB3graTrRLN1kTVLFL-FnNrKCR08zDD_m8M-yfUpOKK2qU0YYOS0Ea0perGVbtOJFXtGyXk87YWVOWfG8mW2HMCeE0Yo2W9nX2RDRWxnNO8Kt63GA6GCK6bgwFiG-Itwto1nIAS7de6ILtBEexi6Y3mAAY2HibIh-VNE4Cw9RviA4DbPZDO6lGeDRSxtMhJl3c1QxwGh79DD9tHJhFDxZhT5KY2N6t5ttaDkE3PudO9nTxfnj5Cq_ubu8npzd5KokTcypEI2iQmnRUN13RFeMdNh3Nes0L4mWXHdFzYSqFKkJE4RpwWnR9w1veMd5sZMdrv4uvXsbMcR27saUYQgtK7ngDaGlSOp4pZR3IXjU7dKnEv6zpaT9Kd7-FG9_iyd-tOKvxvbyw_ynD1Yak0Et_zQVZV2R4hsVg4ve</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469680149</pqid></control><display><type>article</type><title>Alternative Model to Determine the Optimal Government Subsidies in Construction Stage of PPP Rail Transit Projects under Dynamic Uncertainties</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lv, Junna ; Zhou, Wen ; Zhang, Yan-ying</creator><contributor>Chang, Ching Ter ; Ching Ter Chang</contributor><creatorcontrib>Lv, Junna ; Zhou, Wen ; Zhang, Yan-ying ; Chang, Ching Ter ; Ching Ter Chang</creatorcontrib><description>Urban rail transit is a quasioperational project and its net cash inflow can hardly cover the investment expenditure. It is essential to determine an acceptable amount of government subsidy to ensure the financial viability of the PPP projects, so as to encourage the entry of the private partner. The partners involved in PPPs have common interests but conflict regarding the value of government subsidy. Considering the uncertainty characteristic by PPPs and information incompleteness in the decision-making process, this study presents a methodology to calculate the equitable subsidy ratio favored by both participants. This study divides the decision process into two steps. First, this study constructs a financial model and introduces an acceptable range of subsidy ratio by using the Monte Carlo simulation method. Second, this study uses the bargaining game theory to determine a particular subsidy ratio under incomplete information. To verify the applicability of the presented model, the researchers invoke an illustrative example for model validation. This research provides a referential and operational method for the government and private sectors to make government subsidy decisions for quasioperational projects.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3928463</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Agreements ; Asymmetry ; Construction costs ; Decision making ; Engineering ; Game theory ; Government subsidies ; Interest rates ; Investments ; Monte Carlo simulation ; Negotiations ; Net present value ; Payback periods ; Private sector ; Subsidies ; Uncertainty ; Urban rail</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Junna Lv et al.</rights><rights>Copyright © 2020 Junna Lv et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1998c19cf981fdb0f520bedb72bf640fa6fb3729c5c0702902f9613dd8686b663</citedby><cites>FETCH-LOGICAL-c408t-1998c19cf981fdb0f520bedb72bf640fa6fb3729c5c0702902f9613dd8686b663</cites><orcidid>0000-0002-6440-5504 ; 0000-0001-6235-6035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><contributor>Chang, Ching Ter</contributor><contributor>Ching Ter Chang</contributor><creatorcontrib>Lv, Junna</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Zhang, Yan-ying</creatorcontrib><title>Alternative Model to Determine the Optimal Government Subsidies in Construction Stage of PPP Rail Transit Projects under Dynamic Uncertainties</title><title>Mathematical problems in engineering</title><description>Urban rail transit is a quasioperational project and its net cash inflow can hardly cover the investment expenditure. It is essential to determine an acceptable amount of government subsidy to ensure the financial viability of the PPP projects, so as to encourage the entry of the private partner. The partners involved in PPPs have common interests but conflict regarding the value of government subsidy. Considering the uncertainty characteristic by PPPs and information incompleteness in the decision-making process, this study presents a methodology to calculate the equitable subsidy ratio favored by both participants. This study divides the decision process into two steps. First, this study constructs a financial model and introduces an acceptable range of subsidy ratio by using the Monte Carlo simulation method. Second, this study uses the bargaining game theory to determine a particular subsidy ratio under incomplete information. To verify the applicability of the presented model, the researchers invoke an illustrative example for model validation. This research provides a referential and operational method for the government and private sectors to make government subsidy decisions for quasioperational projects.</description><subject>Agreements</subject><subject>Asymmetry</subject><subject>Construction costs</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Game theory</subject><subject>Government subsidies</subject><subject>Interest rates</subject><subject>Investments</subject><subject>Monte Carlo simulation</subject><subject>Negotiations</subject><subject>Net present value</subject><subject>Payback periods</subject><subject>Private sector</subject><subject>Subsidies</subject><subject>Uncertainty</subject><subject>Urban rail</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0EtLxDAQwPEiCj5vnmXAo1aTtE2bo-z6AsXFB3graTrRLN1kTVLFL-FnNrKCR08zDD_m8M-yfUpOKK2qU0YYOS0Ea0perGVbtOJFXtGyXk87YWVOWfG8mW2HMCeE0Yo2W9nX2RDRWxnNO8Kt63GA6GCK6bgwFiG-Itwto1nIAS7de6ILtBEexi6Y3mAAY2HibIh-VNE4Cw9RviA4DbPZDO6lGeDRSxtMhJl3c1QxwGh79DD9tHJhFDxZhT5KY2N6t5ttaDkE3PudO9nTxfnj5Cq_ubu8npzd5KokTcypEI2iQmnRUN13RFeMdNh3Nes0L4mWXHdFzYSqFKkJE4RpwWnR9w1veMd5sZMdrv4uvXsbMcR27saUYQgtK7ngDaGlSOp4pZR3IXjU7dKnEv6zpaT9Kd7-FG9_iyd-tOKvxvbyw_ynD1Yak0Et_zQVZV2R4hsVg4ve</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lv, Junna</creator><creator>Zhou, Wen</creator><creator>Zhang, Yan-ying</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6440-5504</orcidid><orcidid>https://orcid.org/0000-0001-6235-6035</orcidid></search><sort><creationdate>2020</creationdate><title>Alternative Model to Determine the Optimal Government Subsidies in Construction Stage of PPP Rail Transit Projects under Dynamic Uncertainties</title><author>Lv, Junna ; Zhou, Wen ; Zhang, Yan-ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1998c19cf981fdb0f520bedb72bf640fa6fb3729c5c0702902f9613dd8686b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agreements</topic><topic>Asymmetry</topic><topic>Construction costs</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Game theory</topic><topic>Government subsidies</topic><topic>Interest rates</topic><topic>Investments</topic><topic>Monte Carlo simulation</topic><topic>Negotiations</topic><topic>Net present value</topic><topic>Payback periods</topic><topic>Private sector</topic><topic>Subsidies</topic><topic>Uncertainty</topic><topic>Urban rail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Junna</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Zhang, Yan-ying</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Junna</au><au>Zhou, Wen</au><au>Zhang, Yan-ying</au><au>Chang, Ching Ter</au><au>Ching Ter Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative Model to Determine the Optimal Government Subsidies in Construction Stage of PPP Rail Transit Projects under Dynamic Uncertainties</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Urban rail transit is a quasioperational project and its net cash inflow can hardly cover the investment expenditure. It is essential to determine an acceptable amount of government subsidy to ensure the financial viability of the PPP projects, so as to encourage the entry of the private partner. The partners involved in PPPs have common interests but conflict regarding the value of government subsidy. Considering the uncertainty characteristic by PPPs and information incompleteness in the decision-making process, this study presents a methodology to calculate the equitable subsidy ratio favored by both participants. This study divides the decision process into two steps. First, this study constructs a financial model and introduces an acceptable range of subsidy ratio by using the Monte Carlo simulation method. Second, this study uses the bargaining game theory to determine a particular subsidy ratio under incomplete information. To verify the applicability of the presented model, the researchers invoke an illustrative example for model validation. This research provides a referential and operational method for the government and private sectors to make government subsidy decisions for quasioperational projects.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3928463</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6440-5504</orcidid><orcidid>https://orcid.org/0000-0001-6235-6035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2469680149 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Agreements Asymmetry Construction costs Decision making Engineering Game theory Government subsidies Interest rates Investments Monte Carlo simulation Negotiations Net present value Payback periods Private sector Subsidies Uncertainty Urban rail |
title | Alternative Model to Determine the Optimal Government Subsidies in Construction Stage of PPP Rail Transit Projects under Dynamic Uncertainties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20Model%20to%20Determine%20the%20Optimal%20Government%20Subsidies%20in%20Construction%20Stage%20of%20PPP%20Rail%20Transit%20Projects%20under%20Dynamic%20Uncertainties&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lv,%20Junna&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3928463&rft_dat=%3Cproquest_cross%3E2469680149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469680149&rft_id=info:pmid/&rfr_iscdi=true |