The Promises of Parallel Outcomes

A key challenge in causal inference from observational studies is the identification and estimation of causal effects in the presence of unmeasured confounding. In this paper, we introduce a novel approach for causal inference that leverages information in multiple outcomes to deal with unmeasured c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Zhou, Ying, Tang, Dingke, Kong, Dehan, Wang, Linbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A key challenge in causal inference from observational studies is the identification and estimation of causal effects in the presence of unmeasured confounding. In this paper, we introduce a novel approach for causal inference that leverages information in multiple outcomes to deal with unmeasured confounding. The key assumption in our approach is conditional independence among multiple outcomes. In contrast to existing proposals in the literature, the roles of multiple outcomes in our key identification assumption are symmetric, hence the name parallel outcomes. We show nonparametric identifiability with at least three parallel outcomes and provide parametric estimation tools under a set of linear structural equation models. Our proposal is evaluated through a set of synthetic and real data analyses.
ISSN:2331-8422