Model predictive control of resistive wall mode for ITER
•Stabilization of resistive wall modes (RWM) for ITER is presented.•Model predictive control can enlarge the stabilizable region.•Online optimization problems are solved using the primal fast gradient method solver.•Sensitivity to noise and changes of the RWM growth rate is assessed. Active feedback...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2020-11, Vol.160, p.111877, Article 111877 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111877 |
container_title | Fusion engineering and design |
container_volume | 160 |
creator | Gerkšič, Samo Pregelj, Boštjan Ariola, Marco |
description | •Stabilization of resistive wall modes (RWM) for ITER is presented.•Model predictive control can enlarge the stabilizable region.•Online optimization problems are solved using the primal fast gradient method solver.•Sensitivity to noise and changes of the RWM growth rate is assessed.
Active feedback stabilization of the dominant resistive wall mode (RWM) for an ITER H-mode scenario at high plasma pressure using infinite-horizon model predictive control (MPC) is presented. The MPC approach is closely-related to linear-quadratic-Gaussian (LQG) control, improving the performance in the vicinity of constraints. The control-oriented model for MPC is obtained with model reduction from a high-dimensional model produced by CarMa code. Due to the limited time for on-line optimization, a suitable MPC formulation considering only input (coil voltage) constraints is chosen, and the primal fast gradient method is used for solving the associated quadratic programming problem. The performance is evaluated in simulation in comparison to LQG control. Sensitivity to noise, robustness to changes of unstable RWM dynamics, and size of the domain of attraction of the initial conditions of the unstable modes are examined. |
doi_str_mv | 10.1016/j.fusengdes.2020.111877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2469189577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379620304257</els_id><sourcerecordid>2469189577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-79e7183d8c3a59f669440b14f02d0133c090ef6e045bc8c2b97fbc6fa96cbba63</originalsourceid><addsrcrecordid>eNqNkNtKxDAQhoMouB6ewYKX0nXStDlcLsXDgiKIXoc2nUhKbdakq_j2Rrt4qxCYMHzfzPATckZhSYHyy35ptxHHlw7jsoAidSmVQuyRRSosF1TxfbIAVUDOhOKH5CjGHoCK9BZE3vsOh2wTsHNmcu-YGT9OwQ-Zt1nA6OJP86MZhuw1oZn1IVs_XT2ekAPbDBFPd_WYPF9fPdW3-d3Dzbpe3eWGlWzKhUJBJeukYU2lLOeqLKGlpYWiA8qYAQVoOUJZtUaaolXCtobbRnHTtg1nx-R8nrsJ_m2LcdK934YxrdRFyRWVqhIiUWKmTPAxBrR6E9xrEz41Bf0dk-71b0z6OyY9x5RMOZsf2HobjcPR4K8NAJWUtGQs_UpRu6mZnB9rvx2npF78X030aqYxpfXuMOid0bmAZtKdd38e-wWutJTB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469189577</pqid></control><display><type>article</type><title>Model predictive control of resistive wall mode for ITER</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gerkšič, Samo ; Pregelj, Boštjan ; Ariola, Marco</creator><creatorcontrib>Gerkšič, Samo ; Pregelj, Boštjan ; Ariola, Marco</creatorcontrib><description>•Stabilization of resistive wall modes (RWM) for ITER is presented.•Model predictive control can enlarge the stabilizable region.•Online optimization problems are solved using the primal fast gradient method solver.•Sensitivity to noise and changes of the RWM growth rate is assessed.
Active feedback stabilization of the dominant resistive wall mode (RWM) for an ITER H-mode scenario at high plasma pressure using infinite-horizon model predictive control (MPC) is presented. The MPC approach is closely-related to linear-quadratic-Gaussian (LQG) control, improving the performance in the vicinity of constraints. The control-oriented model for MPC is obtained with model reduction from a high-dimensional model produced by CarMa code. Due to the limited time for on-line optimization, a suitable MPC formulation considering only input (coil voltage) constraints is chosen, and the primal fast gradient method is used for solving the associated quadratic programming problem. The performance is evaluated in simulation in comparison to LQG control. Sensitivity to noise, robustness to changes of unstable RWM dynamics, and size of the domain of attraction of the initial conditions of the unstable modes are examined.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2020.111877</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Coils ; Constraint modelling ; Fast gradient method ; Initial conditions ; Linear quadratic Gaussian control ; Model reduction ; Noise control ; Noise sensitivity ; Nuclear Science & Technology ; Optimization ; Performance evaluation ; Plasma magnetic control ; Plasma pressure ; Predictive control ; Quadratic programming ; Robust control ; Science & Technology ; Technology</subject><ispartof>Fusion engineering and design, 2020-11, Vol.160, p.111877, Article 111877</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000588143300047</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c343t-79e7183d8c3a59f669440b14f02d0133c090ef6e045bc8c2b97fbc6fa96cbba63</citedby><cites>FETCH-LOGICAL-c343t-79e7183d8c3a59f669440b14f02d0133c090ef6e045bc8c2b97fbc6fa96cbba63</cites><orcidid>0000-0002-8660-8468 ; 0000-0002-5649-1422 ; 0000-0002-7068-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2020.111877$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><creatorcontrib>Ariola, Marco</creatorcontrib><title>Model predictive control of resistive wall mode for ITER</title><title>Fusion engineering and design</title><addtitle>FUSION ENG DES</addtitle><description>•Stabilization of resistive wall modes (RWM) for ITER is presented.•Model predictive control can enlarge the stabilizable region.•Online optimization problems are solved using the primal fast gradient method solver.•Sensitivity to noise and changes of the RWM growth rate is assessed.
Active feedback stabilization of the dominant resistive wall mode (RWM) for an ITER H-mode scenario at high plasma pressure using infinite-horizon model predictive control (MPC) is presented. The MPC approach is closely-related to linear-quadratic-Gaussian (LQG) control, improving the performance in the vicinity of constraints. The control-oriented model for MPC is obtained with model reduction from a high-dimensional model produced by CarMa code. Due to the limited time for on-line optimization, a suitable MPC formulation considering only input (coil voltage) constraints is chosen, and the primal fast gradient method is used for solving the associated quadratic programming problem. The performance is evaluated in simulation in comparison to LQG control. Sensitivity to noise, robustness to changes of unstable RWM dynamics, and size of the domain of attraction of the initial conditions of the unstable modes are examined.</description><subject>Coils</subject><subject>Constraint modelling</subject><subject>Fast gradient method</subject><subject>Initial conditions</subject><subject>Linear quadratic Gaussian control</subject><subject>Model reduction</subject><subject>Noise control</subject><subject>Noise sensitivity</subject><subject>Nuclear Science & Technology</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Plasma magnetic control</subject><subject>Plasma pressure</subject><subject>Predictive control</subject><subject>Quadratic programming</subject><subject>Robust control</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkNtKxDAQhoMouB6ewYKX0nXStDlcLsXDgiKIXoc2nUhKbdakq_j2Rrt4qxCYMHzfzPATckZhSYHyy35ptxHHlw7jsoAidSmVQuyRRSosF1TxfbIAVUDOhOKH5CjGHoCK9BZE3vsOh2wTsHNmcu-YGT9OwQ-Zt1nA6OJP86MZhuw1oZn1IVs_XT2ekAPbDBFPd_WYPF9fPdW3-d3Dzbpe3eWGlWzKhUJBJeukYU2lLOeqLKGlpYWiA8qYAQVoOUJZtUaaolXCtobbRnHTtg1nx-R8nrsJ_m2LcdK934YxrdRFyRWVqhIiUWKmTPAxBrR6E9xrEz41Bf0dk-71b0z6OyY9x5RMOZsf2HobjcPR4K8NAJWUtGQs_UpRu6mZnB9rvx2npF78X030aqYxpfXuMOid0bmAZtKdd38e-wWutJTB</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Gerkšič, Samo</creator><creator>Pregelj, Boštjan</creator><creator>Ariola, Marco</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8660-8468</orcidid><orcidid>https://orcid.org/0000-0002-5649-1422</orcidid><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid></search><sort><creationdate>202011</creationdate><title>Model predictive control of resistive wall mode for ITER</title><author>Gerkšič, Samo ; Pregelj, Boštjan ; Ariola, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-79e7183d8c3a59f669440b14f02d0133c090ef6e045bc8c2b97fbc6fa96cbba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coils</topic><topic>Constraint modelling</topic><topic>Fast gradient method</topic><topic>Initial conditions</topic><topic>Linear quadratic Gaussian control</topic><topic>Model reduction</topic><topic>Noise control</topic><topic>Noise sensitivity</topic><topic>Nuclear Science & Technology</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Plasma magnetic control</topic><topic>Plasma pressure</topic><topic>Predictive control</topic><topic>Quadratic programming</topic><topic>Robust control</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><creatorcontrib>Ariola, Marco</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerkšič, Samo</au><au>Pregelj, Boštjan</au><au>Ariola, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model predictive control of resistive wall mode for ITER</atitle><jtitle>Fusion engineering and design</jtitle><stitle>FUSION ENG DES</stitle><date>2020-11</date><risdate>2020</risdate><volume>160</volume><spage>111877</spage><pages>111877-</pages><artnum>111877</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•Stabilization of resistive wall modes (RWM) for ITER is presented.•Model predictive control can enlarge the stabilizable region.•Online optimization problems are solved using the primal fast gradient method solver.•Sensitivity to noise and changes of the RWM growth rate is assessed.
Active feedback stabilization of the dominant resistive wall mode (RWM) for an ITER H-mode scenario at high plasma pressure using infinite-horizon model predictive control (MPC) is presented. The MPC approach is closely-related to linear-quadratic-Gaussian (LQG) control, improving the performance in the vicinity of constraints. The control-oriented model for MPC is obtained with model reduction from a high-dimensional model produced by CarMa code. Due to the limited time for on-line optimization, a suitable MPC formulation considering only input (coil voltage) constraints is chosen, and the primal fast gradient method is used for solving the associated quadratic programming problem. The performance is evaluated in simulation in comparison to LQG control. Sensitivity to noise, robustness to changes of unstable RWM dynamics, and size of the domain of attraction of the initial conditions of the unstable modes are examined.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2020.111877</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8660-8468</orcidid><orcidid>https://orcid.org/0000-0002-5649-1422</orcidid><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2020-11, Vol.160, p.111877, Article 111877 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_journals_2469189577 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Coils Constraint modelling Fast gradient method Initial conditions Linear quadratic Gaussian control Model reduction Noise control Noise sensitivity Nuclear Science & Technology Optimization Performance evaluation Plasma magnetic control Plasma pressure Predictive control Quadratic programming Robust control Science & Technology Technology |
title | Model predictive control of resistive wall mode for ITER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20predictive%20control%20of%20resistive%20wall%20mode%20for%20ITER&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Gerk%C5%A1i%C4%8D,%20Samo&rft.date=2020-11&rft.volume=160&rft.spage=111877&rft.pages=111877-&rft.artnum=111877&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2020.111877&rft_dat=%3Cproquest_webof%3E2469189577%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469189577&rft_id=info:pmid/&rft_els_id=S0920379620304257&rfr_iscdi=true |