Stationary count time series models

During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational statistics 2021-01, Vol.13 (1), p.e1502-n/a
1. Verfasser: Weiß, Christian H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e1502
container_title Wiley interdisciplinary reviews. Computational statistics
container_volume 13
creator Weiß, Christian H.
description During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified. This article is categorized under: Statistical Models > Time Series Models Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.
doi_str_mv 10.1002/wics.1502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468774387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468774387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</originalsourceid><addsrcrecordid>eNp1kD9rwzAQxUVpoWnaod_AkKmDE8mSLWkspn8CgQ5p6SgkWQIF20olm5BvX7nOWm644_G7e8cD4BHBNYKw2JycjmtUwuIKLBDHPIewYteXuUSQ3YK7GA9JpakWYLUf5OB8L8M5037sh2xwncmiCc7ErPONaeM9uLGyjebh0pfg6_Xls37Pdx9v2_p5l2uMiyLH3BCpsGp0U3Jdao4xaihtLJJJ55IRW-GSW8srYhBXTFGolaoQ0VwRafESrOa7x-B_RhMHcfBj6JOlKEjFKCWY0UQ9zZQOPsZgrDgG16X_BYJiykBMGYgpg8RuZvbkWnP-HxTf23r_t_ELXoxdpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468774387</pqid></control><display><type>article</type><title>Stationary count time series models</title><source>Access via Wiley Online Library</source><creator>Weiß, Christian H.</creator><creatorcontrib>Weiß, Christian H.</creatorcontrib><description>During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified. This article is categorized under: Statistical Models &gt; Time Series Models Data: Types and Structure &gt; Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences &gt; Modeling Methods Statistical and Graphical Methods of Data Analysis &gt; Modeling Methods and Algorithms We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1502</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Autocorrelation ; counts ; Data ; Data analysis ; Data processing ; dispersion ; Graphical methods ; Markov ; Markov chains ; Mathematical models ; modeling ; Modelling ; Multivariate analysis ; nonlinear ; process ; regression ; Regression analysis ; Regression models ; stationary ; Statistical analysis ; Statistical models ; Stochastic processes ; Stochasticity ; Surveying ; thinning ; Time series</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2021-01, Vol.13 (1), p.e1502-n/a</ispartof><rights>2020 The Author. published by Wiley Periodicals, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</citedby><cites>FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</cites><orcidid>0000-0001-8739-6631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1502$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1502$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Weiß, Christian H.</creatorcontrib><title>Stationary count time series models</title><title>Wiley interdisciplinary reviews. Computational statistics</title><description>During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified. This article is categorized under: Statistical Models &gt; Time Series Models Data: Types and Structure &gt; Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences &gt; Modeling Methods Statistical and Graphical Methods of Data Analysis &gt; Modeling Methods and Algorithms We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.</description><subject>Algorithms</subject><subject>Autocorrelation</subject><subject>counts</subject><subject>Data</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>dispersion</subject><subject>Graphical methods</subject><subject>Markov</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>nonlinear</subject><subject>process</subject><subject>regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>stationary</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Surveying</subject><subject>thinning</subject><subject>Time series</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD9rwzAQxUVpoWnaod_AkKmDE8mSLWkspn8CgQ5p6SgkWQIF20olm5BvX7nOWm644_G7e8cD4BHBNYKw2JycjmtUwuIKLBDHPIewYteXuUSQ3YK7GA9JpakWYLUf5OB8L8M5037sh2xwncmiCc7ErPONaeM9uLGyjebh0pfg6_Xls37Pdx9v2_p5l2uMiyLH3BCpsGp0U3Jdao4xaihtLJJJ55IRW-GSW8srYhBXTFGolaoQ0VwRafESrOa7x-B_RhMHcfBj6JOlKEjFKCWY0UQ9zZQOPsZgrDgG16X_BYJiykBMGYgpg8RuZvbkWnP-HxTf23r_t_ELXoxdpw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Weiß, Christian H.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid></search><sort><creationdate>202101</creationdate><title>Stationary count time series models</title><author>Weiß, Christian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autocorrelation</topic><topic>counts</topic><topic>Data</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>dispersion</topic><topic>Graphical methods</topic><topic>Markov</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>nonlinear</topic><topic>process</topic><topic>regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>stationary</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Surveying</topic><topic>thinning</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiß, Christian H.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiß, Christian H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationary count time series models</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>e1502</spage><epage>n/a</epage><pages>e1502-n/a</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified. This article is categorized under: Statistical Models &gt; Time Series Models Data: Types and Structure &gt; Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences &gt; Modeling Methods Statistical and Graphical Methods of Data Analysis &gt; Modeling Methods and Algorithms We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/wics.1502</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-5108
ispartof Wiley interdisciplinary reviews. Computational statistics, 2021-01, Vol.13 (1), p.e1502-n/a
issn 1939-5108
1939-0068
language eng
recordid cdi_proquest_journals_2468774387
source Access via Wiley Online Library
subjects Algorithms
Autocorrelation
counts
Data
Data analysis
Data processing
dispersion
Graphical methods
Markov
Markov chains
Mathematical models
modeling
Modelling
Multivariate analysis
nonlinear
process
regression
Regression analysis
Regression models
stationary
Statistical analysis
Statistical models
Stochastic processes
Stochasticity
Surveying
thinning
Time series
title Stationary count time series models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationary%20count%20time%20series%20models&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Wei%C3%9F,%20Christian%20H.&rft.date=2021-01&rft.volume=13&rft.issue=1&rft.spage=e1502&rft.epage=n/a&rft.pages=e1502-n/a&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1502&rft_dat=%3Cproquest_cross%3E2468774387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468774387&rft_id=info:pmid/&rfr_iscdi=true