Stationary count time series models
During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational statistics 2021-01, Vol.13 (1), p.e1502-n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e1502 |
container_title | Wiley interdisciplinary reviews. Computational statistics |
container_volume | 13 |
creator | Weiß, Christian H. |
description | During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified.
This article is categorized under:
Statistical Models > Time Series Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods
Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms
We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data. |
doi_str_mv | 10.1002/wics.1502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468774387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468774387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</originalsourceid><addsrcrecordid>eNp1kD9rwzAQxUVpoWnaod_AkKmDE8mSLWkspn8CgQ5p6SgkWQIF20olm5BvX7nOWm644_G7e8cD4BHBNYKw2JycjmtUwuIKLBDHPIewYteXuUSQ3YK7GA9JpakWYLUf5OB8L8M5037sh2xwncmiCc7ErPONaeM9uLGyjebh0pfg6_Xls37Pdx9v2_p5l2uMiyLH3BCpsGp0U3Jdao4xaihtLJJJ55IRW-GSW8srYhBXTFGolaoQ0VwRafESrOa7x-B_RhMHcfBj6JOlKEjFKCWY0UQ9zZQOPsZgrDgG16X_BYJiykBMGYgpg8RuZvbkWnP-HxTf23r_t_ELXoxdpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468774387</pqid></control><display><type>article</type><title>Stationary count time series models</title><source>Access via Wiley Online Library</source><creator>Weiß, Christian H.</creator><creatorcontrib>Weiß, Christian H.</creatorcontrib><description>During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified.
This article is categorized under:
Statistical Models > Time Series Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods
Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms
We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1502</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Autocorrelation ; counts ; Data ; Data analysis ; Data processing ; dispersion ; Graphical methods ; Markov ; Markov chains ; Mathematical models ; modeling ; Modelling ; Multivariate analysis ; nonlinear ; process ; regression ; Regression analysis ; Regression models ; stationary ; Statistical analysis ; Statistical models ; Stochastic processes ; Stochasticity ; Surveying ; thinning ; Time series</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2021-01, Vol.13 (1), p.e1502-n/a</ispartof><rights>2020 The Author. published by Wiley Periodicals, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</citedby><cites>FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</cites><orcidid>0000-0001-8739-6631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1502$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1502$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Weiß, Christian H.</creatorcontrib><title>Stationary count time series models</title><title>Wiley interdisciplinary reviews. Computational statistics</title><description>During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified.
This article is categorized under:
Statistical Models > Time Series Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods
Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms
We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.</description><subject>Algorithms</subject><subject>Autocorrelation</subject><subject>counts</subject><subject>Data</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>dispersion</subject><subject>Graphical methods</subject><subject>Markov</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>nonlinear</subject><subject>process</subject><subject>regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>stationary</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Surveying</subject><subject>thinning</subject><subject>Time series</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD9rwzAQxUVpoWnaod_AkKmDE8mSLWkspn8CgQ5p6SgkWQIF20olm5BvX7nOWm644_G7e8cD4BHBNYKw2JycjmtUwuIKLBDHPIewYteXuUSQ3YK7GA9JpakWYLUf5OB8L8M5037sh2xwncmiCc7ErPONaeM9uLGyjebh0pfg6_Xls37Pdx9v2_p5l2uMiyLH3BCpsGp0U3Jdao4xaihtLJJJ55IRW-GSW8srYhBXTFGolaoQ0VwRafESrOa7x-B_RhMHcfBj6JOlKEjFKCWY0UQ9zZQOPsZgrDgG16X_BYJiykBMGYgpg8RuZvbkWnP-HxTf23r_t_ELXoxdpw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Weiß, Christian H.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid></search><sort><creationdate>202101</creationdate><title>Stationary count time series models</title><author>Weiß, Christian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-39e4ab3bdcd59c5c9331d77df1a4ab9a84f6359ff964e19b8b70cbb614c9b4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autocorrelation</topic><topic>counts</topic><topic>Data</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>dispersion</topic><topic>Graphical methods</topic><topic>Markov</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>nonlinear</topic><topic>process</topic><topic>regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>stationary</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Surveying</topic><topic>thinning</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiß, Christian H.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiß, Christian H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationary count time series models</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>e1502</spage><epage>n/a</epage><pages>e1502-n/a</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified.
This article is categorized under:
Statistical Models > Time Series Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods
Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms
We review and compare popular models for stationary count time series, covering univariate and multivariate, as well as (un)bounded count data.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/wics.1502</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5108 |
ispartof | Wiley interdisciplinary reviews. Computational statistics, 2021-01, Vol.13 (1), p.e1502-n/a |
issn | 1939-5108 1939-0068 |
language | eng |
recordid | cdi_proquest_journals_2468774387 |
source | Access via Wiley Online Library |
subjects | Algorithms Autocorrelation counts Data Data analysis Data processing dispersion Graphical methods Markov Markov chains Mathematical models modeling Modelling Multivariate analysis nonlinear process regression Regression analysis Regression models stationary Statistical analysis Statistical models Stochastic processes Stochasticity Surveying thinning Time series |
title | Stationary count time series models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationary%20count%20time%20series%20models&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Wei%C3%9F,%20Christian%20H.&rft.date=2021-01&rft.volume=13&rft.issue=1&rft.spage=e1502&rft.epage=n/a&rft.pages=e1502-n/a&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1502&rft_dat=%3Cproquest_cross%3E2468774387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468774387&rft_id=info:pmid/&rfr_iscdi=true |