Massive MIMO CSI Feedback Based on Generative Adversarial Network

Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2020-12, Vol.24 (12), p.2805-2808
Hauptverfasser: Tolba, Bassant, Elsabrouty, Maha, Abdu-Aguye, Mubarak G., Gacanin, Haris, Kasem, Hossam Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2808
container_issue 12
container_start_page 2805
container_title IEEE communications letters
container_volume 24
creator Tolba, Bassant
Elsabrouty, Maha
Abdu-Aguye, Mubarak G.
Gacanin, Haris
Kasem, Hossam Mohamed
description Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.
doi_str_mv 10.1109/LCOMM.2020.3017188
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2468759761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9169908</ieee_id><sourcerecordid>2468759761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGE_HjD-iliefizJT9OiIRJKFyUM-bbTskBaS4WzD-e4sQLzNzeJ-ZySPEHUIfEezjbDTP8z4BQT8D1GjMmeihlCalrpx3Mxibam3NpbiKcQkAhiT2xDD3MdZ7TvJpPk9Gb9NkzFwVvlwlTz5ylTSbZMIbDr49pIbVnkP0ofbr5JXb7yasbsTFwq8j3576tfgYP7-PXtLZfDIdDWdpSVa2KTMwelBYEMtSc6YLjZZVQZWkUuOCFFHGipTXlcbuVQWAsvSe2VsaZNfi4bh3G5qvHcfWLZtd2HQnHQ2U0dJqhV2KjqkyNDEGXrhtqD99-HEI7qDK_alyB1XupKqD7o9Qzcz_gEVlLZjsF0XOYwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468759761</pqid></control><display><type>article</type><title>Massive MIMO CSI Feedback Based on Generative Adversarial Network</title><source>IEEE Electronic Library (IEL)</source><creator>Tolba, Bassant ; Elsabrouty, Maha ; Abdu-Aguye, Mubarak G. ; Gacanin, Haris ; Kasem, Hossam Mohamed</creator><creatorcontrib>Tolba, Bassant ; Elsabrouty, Maha ; Abdu-Aguye, Mubarak G. ; Gacanin, Haris ; Kasem, Hossam Mohamed</creatorcontrib><description>Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2020.3017188</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Codes ; compressed sensing ; Convolutional codes ; CSI feedback ; Decoding ; deep learning ; Feedback ; Gallium nitride ; generative adversarial network ; Generative adversarial networks ; Generators ; Machine learning ; MIMO (control systems) ; Performance enhancement ; Training</subject><ispartof>IEEE communications letters, 2020-12, Vol.24 (12), p.2805-2808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</citedby><cites>FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</cites><orcidid>0000-0002-3085-7844 ; 0000-0003-3168-8883 ; 0000-0001-8680-9609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9169908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9169908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tolba, Bassant</creatorcontrib><creatorcontrib>Elsabrouty, Maha</creatorcontrib><creatorcontrib>Abdu-Aguye, Mubarak G.</creatorcontrib><creatorcontrib>Gacanin, Haris</creatorcontrib><creatorcontrib>Kasem, Hossam Mohamed</creatorcontrib><title>Massive MIMO CSI Feedback Based on Generative Adversarial Network</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.</description><subject>Coders</subject><subject>Codes</subject><subject>compressed sensing</subject><subject>Convolutional codes</subject><subject>CSI feedback</subject><subject>Decoding</subject><subject>deep learning</subject><subject>Feedback</subject><subject>Gallium nitride</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Machine learning</subject><subject>MIMO (control systems)</subject><subject>Performance enhancement</subject><subject>Training</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGE_HjD-iliefizJT9OiIRJKFyUM-bbTskBaS4WzD-e4sQLzNzeJ-ZySPEHUIfEezjbDTP8z4BQT8D1GjMmeihlCalrpx3Mxibam3NpbiKcQkAhiT2xDD3MdZ7TvJpPk9Gb9NkzFwVvlwlTz5ylTSbZMIbDr49pIbVnkP0ofbr5JXb7yasbsTFwq8j3576tfgYP7-PXtLZfDIdDWdpSVa2KTMwelBYEMtSc6YLjZZVQZWkUuOCFFHGipTXlcbuVQWAsvSe2VsaZNfi4bh3G5qvHcfWLZtd2HQnHQ2U0dJqhV2KjqkyNDEGXrhtqD99-HEI7qDK_alyB1XupKqD7o9Qzcz_gEVlLZjsF0XOYwA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Tolba, Bassant</creator><creator>Elsabrouty, Maha</creator><creator>Abdu-Aguye, Mubarak G.</creator><creator>Gacanin, Haris</creator><creator>Kasem, Hossam Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3085-7844</orcidid><orcidid>https://orcid.org/0000-0003-3168-8883</orcidid><orcidid>https://orcid.org/0000-0001-8680-9609</orcidid></search><sort><creationdate>20201201</creationdate><title>Massive MIMO CSI Feedback Based on Generative Adversarial Network</title><author>Tolba, Bassant ; Elsabrouty, Maha ; Abdu-Aguye, Mubarak G. ; Gacanin, Haris ; Kasem, Hossam Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coders</topic><topic>Codes</topic><topic>compressed sensing</topic><topic>Convolutional codes</topic><topic>CSI feedback</topic><topic>Decoding</topic><topic>deep learning</topic><topic>Feedback</topic><topic>Gallium nitride</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Machine learning</topic><topic>MIMO (control systems)</topic><topic>Performance enhancement</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolba, Bassant</creatorcontrib><creatorcontrib>Elsabrouty, Maha</creatorcontrib><creatorcontrib>Abdu-Aguye, Mubarak G.</creatorcontrib><creatorcontrib>Gacanin, Haris</creatorcontrib><creatorcontrib>Kasem, Hossam Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tolba, Bassant</au><au>Elsabrouty, Maha</au><au>Abdu-Aguye, Mubarak G.</au><au>Gacanin, Haris</au><au>Kasem, Hossam Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive MIMO CSI Feedback Based on Generative Adversarial Network</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>24</volume><issue>12</issue><spage>2805</spage><epage>2808</epage><pages>2805-2808</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2020.3017188</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3085-7844</orcidid><orcidid>https://orcid.org/0000-0003-3168-8883</orcidid><orcidid>https://orcid.org/0000-0001-8680-9609</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2020-12, Vol.24 (12), p.2805-2808
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_2468759761
source IEEE Electronic Library (IEL)
subjects Coders
Codes
compressed sensing
Convolutional codes
CSI feedback
Decoding
deep learning
Feedback
Gallium nitride
generative adversarial network
Generative adversarial networks
Generators
Machine learning
MIMO (control systems)
Performance enhancement
Training
title Massive MIMO CSI Feedback Based on Generative Adversarial Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20MIMO%20CSI%20Feedback%20Based%20on%20Generative%20Adversarial%20Network&rft.jtitle=IEEE%20communications%20letters&rft.au=Tolba,%20Bassant&rft.date=2020-12-01&rft.volume=24&rft.issue=12&rft.spage=2805&rft.epage=2808&rft.pages=2805-2808&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2020.3017188&rft_dat=%3Cproquest_RIE%3E2468759761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468759761&rft_id=info:pmid/&rft_ieee_id=9169908&rfr_iscdi=true