Massive MIMO CSI Feedback Based on Generative Adversarial Network
Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challe...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2020-12, Vol.24 (12), p.2805-2808 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2808 |
---|---|
container_issue | 12 |
container_start_page | 2805 |
container_title | IEEE communications letters |
container_volume | 24 |
creator | Tolba, Bassant Elsabrouty, Maha Abdu-Aguye, Mubarak G. Gacanin, Haris Kasem, Hossam Mohamed |
description | Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels. |
doi_str_mv | 10.1109/LCOMM.2020.3017188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2468759761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9169908</ieee_id><sourcerecordid>2468759761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGE_HjD-iliefizJT9OiIRJKFyUM-bbTskBaS4WzD-e4sQLzNzeJ-ZySPEHUIfEezjbDTP8z4BQT8D1GjMmeihlCalrpx3Mxibam3NpbiKcQkAhiT2xDD3MdZ7TvJpPk9Gb9NkzFwVvlwlTz5ylTSbZMIbDr49pIbVnkP0ofbr5JXb7yasbsTFwq8j3576tfgYP7-PXtLZfDIdDWdpSVa2KTMwelBYEMtSc6YLjZZVQZWkUuOCFFHGipTXlcbuVQWAsvSe2VsaZNfi4bh3G5qvHcfWLZtd2HQnHQ2U0dJqhV2KjqkyNDEGXrhtqD99-HEI7qDK_alyB1XupKqD7o9Qzcz_gEVlLZjsF0XOYwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468759761</pqid></control><display><type>article</type><title>Massive MIMO CSI Feedback Based on Generative Adversarial Network</title><source>IEEE Electronic Library (IEL)</source><creator>Tolba, Bassant ; Elsabrouty, Maha ; Abdu-Aguye, Mubarak G. ; Gacanin, Haris ; Kasem, Hossam Mohamed</creator><creatorcontrib>Tolba, Bassant ; Elsabrouty, Maha ; Abdu-Aguye, Mubarak G. ; Gacanin, Haris ; Kasem, Hossam Mohamed</creatorcontrib><description>Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2020.3017188</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Codes ; compressed sensing ; Convolutional codes ; CSI feedback ; Decoding ; deep learning ; Feedback ; Gallium nitride ; generative adversarial network ; Generative adversarial networks ; Generators ; Machine learning ; MIMO (control systems) ; Performance enhancement ; Training</subject><ispartof>IEEE communications letters, 2020-12, Vol.24 (12), p.2805-2808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</citedby><cites>FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</cites><orcidid>0000-0002-3085-7844 ; 0000-0003-3168-8883 ; 0000-0001-8680-9609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9169908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9169908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tolba, Bassant</creatorcontrib><creatorcontrib>Elsabrouty, Maha</creatorcontrib><creatorcontrib>Abdu-Aguye, Mubarak G.</creatorcontrib><creatorcontrib>Gacanin, Haris</creatorcontrib><creatorcontrib>Kasem, Hossam Mohamed</creatorcontrib><title>Massive MIMO CSI Feedback Based on Generative Adversarial Network</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.</description><subject>Coders</subject><subject>Codes</subject><subject>compressed sensing</subject><subject>Convolutional codes</subject><subject>CSI feedback</subject><subject>Decoding</subject><subject>deep learning</subject><subject>Feedback</subject><subject>Gallium nitride</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Machine learning</subject><subject>MIMO (control systems)</subject><subject>Performance enhancement</subject><subject>Training</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGE_HjD-iliefizJT9OiIRJKFyUM-bbTskBaS4WzD-e4sQLzNzeJ-ZySPEHUIfEezjbDTP8z4BQT8D1GjMmeihlCalrpx3Mxibam3NpbiKcQkAhiT2xDD3MdZ7TvJpPk9Gb9NkzFwVvlwlTz5ylTSbZMIbDr49pIbVnkP0ofbr5JXb7yasbsTFwq8j3576tfgYP7-PXtLZfDIdDWdpSVa2KTMwelBYEMtSc6YLjZZVQZWkUuOCFFHGipTXlcbuVQWAsvSe2VsaZNfi4bh3G5qvHcfWLZtd2HQnHQ2U0dJqhV2KjqkyNDEGXrhtqD99-HEI7qDK_alyB1XupKqD7o9Qzcz_gEVlLZjsF0XOYwA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Tolba, Bassant</creator><creator>Elsabrouty, Maha</creator><creator>Abdu-Aguye, Mubarak G.</creator><creator>Gacanin, Haris</creator><creator>Kasem, Hossam Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3085-7844</orcidid><orcidid>https://orcid.org/0000-0003-3168-8883</orcidid><orcidid>https://orcid.org/0000-0001-8680-9609</orcidid></search><sort><creationdate>20201201</creationdate><title>Massive MIMO CSI Feedback Based on Generative Adversarial Network</title><author>Tolba, Bassant ; Elsabrouty, Maha ; Abdu-Aguye, Mubarak G. ; Gacanin, Haris ; Kasem, Hossam Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ee0e1a061b2e5c7e37b719e6b2d52c71f26223e626a7d7177960015caaeea9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coders</topic><topic>Codes</topic><topic>compressed sensing</topic><topic>Convolutional codes</topic><topic>CSI feedback</topic><topic>Decoding</topic><topic>deep learning</topic><topic>Feedback</topic><topic>Gallium nitride</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Machine learning</topic><topic>MIMO (control systems)</topic><topic>Performance enhancement</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolba, Bassant</creatorcontrib><creatorcontrib>Elsabrouty, Maha</creatorcontrib><creatorcontrib>Abdu-Aguye, Mubarak G.</creatorcontrib><creatorcontrib>Gacanin, Haris</creatorcontrib><creatorcontrib>Kasem, Hossam Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tolba, Bassant</au><au>Elsabrouty, Maha</au><au>Abdu-Aguye, Mubarak G.</au><au>Gacanin, Haris</au><au>Kasem, Hossam Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive MIMO CSI Feedback Based on Generative Adversarial Network</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>24</volume><issue>12</issue><spage>2805</spage><epage>2808</epage><pages>2805-2808</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Massive multiple-input multiple-output (M-MIMO) is one of the main 5G-enabling technologies that promise to increase cell throughput and reduce multiuser interference. However, these abilities rely on exploiting the channel state information (CSI) feedback at base stations (BSs). One critical challenge is that the user equipment (UE) needs to return a large amount of channel information to the base station, creating a large signaling overhead. In this letter, we propose a framework based on deep learning, which is able to efficiently compress and recover the feedback CSI. The encoder learns the most suitable compressed codeword corresponding to the CSI. The decoder decompresses this codeword at the receiving BS end using a Generative Adversarial Network (GAN). A novel objective function is proposed and used to train the Deep Convolutional Generative Adversarial Network (DCGAN) to improve the performance of our proposed framework. Simulation results demonstrate that the proposed framework outperforms traditional compressive sensing-based methods and provides remarkably robust performance for the outdoor channels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2020.3017188</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3085-7844</orcidid><orcidid>https://orcid.org/0000-0003-3168-8883</orcidid><orcidid>https://orcid.org/0000-0001-8680-9609</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2020-12, Vol.24 (12), p.2805-2808 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2468759761 |
source | IEEE Electronic Library (IEL) |
subjects | Coders Codes compressed sensing Convolutional codes CSI feedback Decoding deep learning Feedback Gallium nitride generative adversarial network Generative adversarial networks Generators Machine learning MIMO (control systems) Performance enhancement Training |
title | Massive MIMO CSI Feedback Based on Generative Adversarial Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20MIMO%20CSI%20Feedback%20Based%20on%20Generative%20Adversarial%20Network&rft.jtitle=IEEE%20communications%20letters&rft.au=Tolba,%20Bassant&rft.date=2020-12-01&rft.volume=24&rft.issue=12&rft.spage=2805&rft.epage=2808&rft.pages=2805-2808&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2020.3017188&rft_dat=%3Cproquest_RIE%3E2468759761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468759761&rft_id=info:pmid/&rft_ieee_id=9169908&rfr_iscdi=true |