Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension

In this effort, the interfibrillar behavior in UHMWPE fibers subjected to tension is investigated using a unique experimental setup that allows for the in-situ monitoring of the deformations of sub-fiber level components within the fiber. Digital image correlation (DIC) is used to measure fiber surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2020-12, Vol.206, p.354-369
Hauptverfasser: Staniszewski, Jeffrey M., Bogetti, Travis A., Wu, Vincent, Moy, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue
container_start_page 354
container_title International journal of solids and structures
container_volume 206
creator Staniszewski, Jeffrey M.
Bogetti, Travis A.
Wu, Vincent
Moy, Paul
description In this effort, the interfibrillar behavior in UHMWPE fibers subjected to tension is investigated using a unique experimental setup that allows for the in-situ monitoring of the deformations of sub-fiber level components within the fiber. Digital image correlation (DIC) is used to measure fiber surface strains, quantify the stress-strain fiber response and interfibrillar sliding between adjacent macrofibrils within the fiber’s microstructure, and estimate the length of macrofibrils within the fiber. Finite element (FE) based models of the UHMWPE fibers are developed that account for the complex fibrillar microstructure and macrofibrillar interactions governing the macro-scale fiber response under uniaxial tension. The FE-based models are compared to both experimental results and previously developed analytical fiber models to study the effects of underlying model assumptions on the fiber’s stiffness and deformation response. The shortcomings of a continuum material model for the fiber are revealed. A unique beam connector model of the fiber is presented which mimics the inherent interfibrillar deformation mechanics observed in the experiments. A Design of Experiments (DoE) approach is used to facilitate development of the model. Predictions are shown to compare favorably with experimental results for both the fiber stress-strain response and the degree of interfibrillar sliding. The findings presented in this paper contribute towards the fundamental understanding of the complex microstructure-property relations in UHMWPE fibers and can ultimately be used to help guide the development of high performance fibers widely used in armor ballistic protection systems.
doi_str_mv 10.1016/j.ijsolstr.2020.09.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468690361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320303620</els_id><sourcerecordid>2468690361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-ae63acb4f6355b7d1f6f4734551ab4ceba4a3997990be9264fee98635bcd37f13</originalsourceid><addsrcrecordid>eNqFkE9LJDEQxYOs4Kz6FSTgZT10m3Qy6c5tRfwHih4UjyFJVztpYmc2SSvz7c0w69lTUdR7r3g_hE4oqSmh4nys3ZiCTznWDWlITWRNGrqHFrRrZdVQLn6hBSmXqhUdO0C_UxoJIZxJskDhbsoQB2ei815HbGClP1yI2E149jnqauXeVvg9eLDzVvAJZc94HfwG8mrjYQL85-X24fXp6gwnN715wCUOYsJpNiPYDD3OAWeYkgvTEdoftE9w_H8eopfrq-fL2-r-8ebu8uK-sqzrcqVBMG0NHwRbLk3b00EMvGV8uaTacAtGc82kbKUkBmQj-AAguyI2tmftQNkhOt3lrmP4N0PKagxznMpL1XDRCUmY2KrETmVjSCnCoNbRveu4UZSoLVw1qm-4agtXEakK3GL8uzNC6fDhIKpkHUwWehdLZdUH91PEF3nniLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468690361</pqid></control><display><type>article</type><title>Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Staniszewski, Jeffrey M. ; Bogetti, Travis A. ; Wu, Vincent ; Moy, Paul</creator><creatorcontrib>Staniszewski, Jeffrey M. ; Bogetti, Travis A. ; Wu, Vincent ; Moy, Paul</creatorcontrib><description>In this effort, the interfibrillar behavior in UHMWPE fibers subjected to tension is investigated using a unique experimental setup that allows for the in-situ monitoring of the deformations of sub-fiber level components within the fiber. Digital image correlation (DIC) is used to measure fiber surface strains, quantify the stress-strain fiber response and interfibrillar sliding between adjacent macrofibrils within the fiber’s microstructure, and estimate the length of macrofibrils within the fiber. Finite element (FE) based models of the UHMWPE fibers are developed that account for the complex fibrillar microstructure and macrofibrillar interactions governing the macro-scale fiber response under uniaxial tension. The FE-based models are compared to both experimental results and previously developed analytical fiber models to study the effects of underlying model assumptions on the fiber’s stiffness and deformation response. The shortcomings of a continuum material model for the fiber are revealed. A unique beam connector model of the fiber is presented which mimics the inherent interfibrillar deformation mechanics observed in the experiments. A Design of Experiments (DoE) approach is used to facilitate development of the model. Predictions are shown to compare favorably with experimental results for both the fiber stress-strain response and the degree of interfibrillar sliding. The findings presented in this paper contribute towards the fundamental understanding of the complex microstructure-property relations in UHMWPE fibers and can ultimately be used to help guide the development of high performance fibers widely used in armor ballistic protection systems.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.09.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Correlation analysis ; Deformation effects ; Design of experiments ; Digital imaging ; Fibers ; Finite element ; Finite element method ; Interaction behavior ; Microstructural ; Microstructure ; Modelling ; Polymers ; Protection systems ; Shear lag ; Sliding ; Stiffness ; Strain ; Stress-strain relationships ; Tension ; Ultra high molecular weight polyethylene</subject><ispartof>International journal of solids and structures, 2020-12, Vol.206, p.354-369</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-ae63acb4f6355b7d1f6f4734551ab4ceba4a3997990be9264fee98635bcd37f13</citedby><cites>FETCH-LOGICAL-c388t-ae63acb4f6355b7d1f6f4734551ab4ceba4a3997990be9264fee98635bcd37f13</cites><orcidid>0000-0002-2469-3257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2020.09.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Staniszewski, Jeffrey M.</creatorcontrib><creatorcontrib>Bogetti, Travis A.</creatorcontrib><creatorcontrib>Wu, Vincent</creatorcontrib><creatorcontrib>Moy, Paul</creatorcontrib><title>Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension</title><title>International journal of solids and structures</title><description>In this effort, the interfibrillar behavior in UHMWPE fibers subjected to tension is investigated using a unique experimental setup that allows for the in-situ monitoring of the deformations of sub-fiber level components within the fiber. Digital image correlation (DIC) is used to measure fiber surface strains, quantify the stress-strain fiber response and interfibrillar sliding between adjacent macrofibrils within the fiber’s microstructure, and estimate the length of macrofibrils within the fiber. Finite element (FE) based models of the UHMWPE fibers are developed that account for the complex fibrillar microstructure and macrofibrillar interactions governing the macro-scale fiber response under uniaxial tension. The FE-based models are compared to both experimental results and previously developed analytical fiber models to study the effects of underlying model assumptions on the fiber’s stiffness and deformation response. The shortcomings of a continuum material model for the fiber are revealed. A unique beam connector model of the fiber is presented which mimics the inherent interfibrillar deformation mechanics observed in the experiments. A Design of Experiments (DoE) approach is used to facilitate development of the model. Predictions are shown to compare favorably with experimental results for both the fiber stress-strain response and the degree of interfibrillar sliding. The findings presented in this paper contribute towards the fundamental understanding of the complex microstructure-property relations in UHMWPE fibers and can ultimately be used to help guide the development of high performance fibers widely used in armor ballistic protection systems.</description><subject>Correlation analysis</subject><subject>Deformation effects</subject><subject>Design of experiments</subject><subject>Digital imaging</subject><subject>Fibers</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Interaction behavior</subject><subject>Microstructural</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Polymers</subject><subject>Protection systems</subject><subject>Shear lag</subject><subject>Sliding</subject><subject>Stiffness</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><subject>Tension</subject><subject>Ultra high molecular weight polyethylene</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LJDEQxYOs4Kz6FSTgZT10m3Qy6c5tRfwHih4UjyFJVztpYmc2SSvz7c0w69lTUdR7r3g_hE4oqSmh4nys3ZiCTznWDWlITWRNGrqHFrRrZdVQLn6hBSmXqhUdO0C_UxoJIZxJskDhbsoQB2ei815HbGClP1yI2E149jnqauXeVvg9eLDzVvAJZc94HfwG8mrjYQL85-X24fXp6gwnN715wCUOYsJpNiPYDD3OAWeYkgvTEdoftE9w_H8eopfrq-fL2-r-8ebu8uK-sqzrcqVBMG0NHwRbLk3b00EMvGV8uaTacAtGc82kbKUkBmQj-AAguyI2tmftQNkhOt3lrmP4N0PKagxznMpL1XDRCUmY2KrETmVjSCnCoNbRveu4UZSoLVw1qm-4agtXEakK3GL8uzNC6fDhIKpkHUwWehdLZdUH91PEF3nniLM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Staniszewski, Jeffrey M.</creator><creator>Bogetti, Travis A.</creator><creator>Wu, Vincent</creator><creator>Moy, Paul</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2469-3257</orcidid></search><sort><creationdate>20201201</creationdate><title>Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension</title><author>Staniszewski, Jeffrey M. ; Bogetti, Travis A. ; Wu, Vincent ; Moy, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-ae63acb4f6355b7d1f6f4734551ab4ceba4a3997990be9264fee98635bcd37f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Correlation analysis</topic><topic>Deformation effects</topic><topic>Design of experiments</topic><topic>Digital imaging</topic><topic>Fibers</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Interaction behavior</topic><topic>Microstructural</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Polymers</topic><topic>Protection systems</topic><topic>Shear lag</topic><topic>Sliding</topic><topic>Stiffness</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><topic>Tension</topic><topic>Ultra high molecular weight polyethylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staniszewski, Jeffrey M.</creatorcontrib><creatorcontrib>Bogetti, Travis A.</creatorcontrib><creatorcontrib>Wu, Vincent</creatorcontrib><creatorcontrib>Moy, Paul</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staniszewski, Jeffrey M.</au><au>Bogetti, Travis A.</au><au>Wu, Vincent</au><au>Moy, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>206</volume><spage>354</spage><epage>369</epage><pages>354-369</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>In this effort, the interfibrillar behavior in UHMWPE fibers subjected to tension is investigated using a unique experimental setup that allows for the in-situ monitoring of the deformations of sub-fiber level components within the fiber. Digital image correlation (DIC) is used to measure fiber surface strains, quantify the stress-strain fiber response and interfibrillar sliding between adjacent macrofibrils within the fiber’s microstructure, and estimate the length of macrofibrils within the fiber. Finite element (FE) based models of the UHMWPE fibers are developed that account for the complex fibrillar microstructure and macrofibrillar interactions governing the macro-scale fiber response under uniaxial tension. The FE-based models are compared to both experimental results and previously developed analytical fiber models to study the effects of underlying model assumptions on the fiber’s stiffness and deformation response. The shortcomings of a continuum material model for the fiber are revealed. A unique beam connector model of the fiber is presented which mimics the inherent interfibrillar deformation mechanics observed in the experiments. A Design of Experiments (DoE) approach is used to facilitate development of the model. Predictions are shown to compare favorably with experimental results for both the fiber stress-strain response and the degree of interfibrillar sliding. The findings presented in this paper contribute towards the fundamental understanding of the complex microstructure-property relations in UHMWPE fibers and can ultimately be used to help guide the development of high performance fibers widely used in armor ballistic protection systems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.09.021</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2469-3257</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2020-12, Vol.206, p.354-369
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2468690361
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Correlation analysis
Deformation effects
Design of experiments
Digital imaging
Fibers
Finite element
Finite element method
Interaction behavior
Microstructural
Microstructure
Modelling
Polymers
Protection systems
Shear lag
Sliding
Stiffness
Strain
Stress-strain relationships
Tension
Ultra high molecular weight polyethylene
title Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfibrillar%20behavior%20in%20ultra-high%20molecular%20weight%20polyethylene%20(UHMWPE)%20single%20fibers%20subjected%20to%20tension&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Staniszewski,%20Jeffrey%20M.&rft.date=2020-12-01&rft.volume=206&rft.spage=354&rft.epage=369&rft.pages=354-369&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.09.021&rft_dat=%3Cproquest_cross%3E2468690361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468690361&rft_id=info:pmid/&rft_els_id=S0020768320303620&rfr_iscdi=true