D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps

Soil erosion is addressed as one of the main hydrogeological risks in the European Union. Since the average annual soil loss rate exceeds the annual average formation rate, soil is considered as a non-renewable resource. Besides, human activities, human-induced forces and climate change have further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of remote sensing 2019-12, Vol.52 (sup4), p.34-53
Hauptverfasser: Gianinetto, Marco, Aiello, Martina, Polinelli, Francesco, Frassy, Federico, Rulli, Maria Cristina, Ravazzani, Giovanni, Bocchiola, Daniele, Chiarelli, Davide Danilo, Soncini, Andrea, Vezzoli, Renata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue sup4
container_start_page 34
container_title European journal of remote sensing
container_volume 52
creator Gianinetto, Marco
Aiello, Martina
Polinelli, Francesco
Frassy, Federico
Rulli, Maria Cristina
Ravazzani, Giovanni
Bocchiola, Daniele
Chiarelli, Davide Danilo
Soncini, Andrea
Vezzoli, Renata
description Soil erosion is addressed as one of the main hydrogeological risks in the European Union. Since the average annual soil loss rate exceeds the annual average formation rate, soil is considered as a non-renewable resource. Besides, human activities, human-induced forces and climate change have further accelerated the erosion processes. Therefore, understanding soil erosion spatial and temporal trends could provide important information for supporting government land-use policies and strategies for its reduction. This paper describes the Dynamic Revised Universal Soil Loss Equation (D-RUSLE) model, a modified version of the well-known RUSLE model. The RUSLE model formulation was modified to include variations in rainfall erosivity and land-cover to provide more accurate estimates of the potential soil erosion in the Italian Alps. Specifically, the modelling of snow occurrence and the inclusion of Earth Observation data allow dynamic estimation of both spatial and temporal land-cover changes. Results obtained in Val Camonica (Italy) show that RUSLE model tends to overestimate erosion rates in Autumn/Winter because not considering snow cover and vegetation dynamics. The assimilation of satellite-derived information in D-RUSLE allows a better representation of soil erosion forcing, thus proving a more accurate erosion estimate for supporting government land-use policies and strategies for reducing this phenomenon.
doi_str_mv 10.1080/22797254.2019.1669491
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2468558905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c5b365d2146e4bcf82c311bac3b32197</doaj_id><sourcerecordid>2468558905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d87ee0f29c96197da15d1c56a17bac02d69ab6b8d5b2c7d426972a5b7460038a3</originalsourceid><addsrcrecordid>eNp9UU1LAzEQXURBUX-CEPC8Nclusoknxc9CQfDjHGaTrKakm5pEpP_e1Fbx5FwyTN68NzOvqk4InhAs8BmlnewoaycUEzkhnMtWkp3qYF2v1x-7f_L96jilOS4hMO6EPKjm1_Xjy9Ps5hwBMqsRFk6jRTDWoxyQTdktIFu0DNmO2YFHKTiPbAzJhRF9uvyGUgF47wqqgC1KNjqbkBtRfrNomsE7GNGlX6ajam8An-zx9j2sXm5vnq_u69nD3fTqclbrlpFcG9FZiwcqteREdgYIM0QzDqTrQWNquISe98KwnurOtJSX_YH1XcsxbgQ0h9V0w2sCzNUylhXiSgVw6rsQ4quCmJ32VmnWN5wZSlpu214PguqGkCLT9A0t4oXrdMO1jOH9o9xDzcNHHMv4irZcMCYkZgXFNihdDpOiHX5VCVZrl9SPS2rtktq6VPouNn1uHEJcwGeI3qgMKx_iEGHULqnmf4ovuDeX8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468558905</pqid></control><display><type>article</type><title>D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><creator>Gianinetto, Marco ; Aiello, Martina ; Polinelli, Francesco ; Frassy, Federico ; Rulli, Maria Cristina ; Ravazzani, Giovanni ; Bocchiola, Daniele ; Chiarelli, Davide Danilo ; Soncini, Andrea ; Vezzoli, Renata</creator><creatorcontrib>Gianinetto, Marco ; Aiello, Martina ; Polinelli, Francesco ; Frassy, Federico ; Rulli, Maria Cristina ; Ravazzani, Giovanni ; Bocchiola, Daniele ; Chiarelli, Davide Danilo ; Soncini, Andrea ; Vezzoli, Renata</creatorcontrib><description>Soil erosion is addressed as one of the main hydrogeological risks in the European Union. Since the average annual soil loss rate exceeds the annual average formation rate, soil is considered as a non-renewable resource. Besides, human activities, human-induced forces and climate change have further accelerated the erosion processes. Therefore, understanding soil erosion spatial and temporal trends could provide important information for supporting government land-use policies and strategies for its reduction. This paper describes the Dynamic Revised Universal Soil Loss Equation (D-RUSLE) model, a modified version of the well-known RUSLE model. The RUSLE model formulation was modified to include variations in rainfall erosivity and land-cover to provide more accurate estimates of the potential soil erosion in the Italian Alps. Specifically, the modelling of snow occurrence and the inclusion of Earth Observation data allow dynamic estimation of both spatial and temporal land-cover changes. Results obtained in Val Camonica (Italy) show that RUSLE model tends to overestimate erosion rates in Autumn/Winter because not considering snow cover and vegetation dynamics. The assimilation of satellite-derived information in D-RUSLE allows a better representation of soil erosion forcing, thus proving a more accurate erosion estimate for supporting government land-use policies and strategies for reducing this phenomenon.</description><identifier>ISSN: 2279-7254</identifier><identifier>EISSN: 2279-7254</identifier><identifier>DOI: 10.1080/22797254.2019.1669491</identifier><language>eng</language><publisher>Cagiari: Taylor &amp; Francis</publisher><subject>Accelerated erosion ; Alpine basin ; Climate and human activity ; Climate change ; Dynamic models ; Erosion processes ; Erosion rates ; Geology ; Human influences ; Hydrogeology ; Land cover ; Land use ; natural hazards ; NDVI ; Nonrenewable resources ; Policies ; Rainfall ; Renewable resources ; RUSLE model ; Satellite time series ; Snow cover ; Soil dynamics ; Soil erosion ; Soil loss</subject><ispartof>European journal of remote sensing, 2019-12, Vol.52 (sup4), p.34-53</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d87ee0f29c96197da15d1c56a17bac02d69ab6b8d5b2c7d426972a5b7460038a3</citedby><cites>FETCH-LOGICAL-c451t-d87ee0f29c96197da15d1c56a17bac02d69ab6b8d5b2c7d426972a5b7460038a3</cites><orcidid>0000-0002-6850-0883 ; 0000-0001-9011-616X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/22797254.2019.1669491$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/22797254.2019.1669491$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Gianinetto, Marco</creatorcontrib><creatorcontrib>Aiello, Martina</creatorcontrib><creatorcontrib>Polinelli, Francesco</creatorcontrib><creatorcontrib>Frassy, Federico</creatorcontrib><creatorcontrib>Rulli, Maria Cristina</creatorcontrib><creatorcontrib>Ravazzani, Giovanni</creatorcontrib><creatorcontrib>Bocchiola, Daniele</creatorcontrib><creatorcontrib>Chiarelli, Davide Danilo</creatorcontrib><creatorcontrib>Soncini, Andrea</creatorcontrib><creatorcontrib>Vezzoli, Renata</creatorcontrib><title>D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps</title><title>European journal of remote sensing</title><description>Soil erosion is addressed as one of the main hydrogeological risks in the European Union. Since the average annual soil loss rate exceeds the annual average formation rate, soil is considered as a non-renewable resource. Besides, human activities, human-induced forces and climate change have further accelerated the erosion processes. Therefore, understanding soil erosion spatial and temporal trends could provide important information for supporting government land-use policies and strategies for its reduction. This paper describes the Dynamic Revised Universal Soil Loss Equation (D-RUSLE) model, a modified version of the well-known RUSLE model. The RUSLE model formulation was modified to include variations in rainfall erosivity and land-cover to provide more accurate estimates of the potential soil erosion in the Italian Alps. Specifically, the modelling of snow occurrence and the inclusion of Earth Observation data allow dynamic estimation of both spatial and temporal land-cover changes. Results obtained in Val Camonica (Italy) show that RUSLE model tends to overestimate erosion rates in Autumn/Winter because not considering snow cover and vegetation dynamics. The assimilation of satellite-derived information in D-RUSLE allows a better representation of soil erosion forcing, thus proving a more accurate erosion estimate for supporting government land-use policies and strategies for reducing this phenomenon.</description><subject>Accelerated erosion</subject><subject>Alpine basin</subject><subject>Climate and human activity</subject><subject>Climate change</subject><subject>Dynamic models</subject><subject>Erosion processes</subject><subject>Erosion rates</subject><subject>Geology</subject><subject>Human influences</subject><subject>Hydrogeology</subject><subject>Land cover</subject><subject>Land use</subject><subject>natural hazards</subject><subject>NDVI</subject><subject>Nonrenewable resources</subject><subject>Policies</subject><subject>Rainfall</subject><subject>Renewable resources</subject><subject>RUSLE model</subject><subject>Satellite time series</subject><subject>Snow cover</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soil loss</subject><issn>2279-7254</issn><issn>2279-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LAzEQXURBUX-CEPC8Nclusoknxc9CQfDjHGaTrKakm5pEpP_e1Fbx5FwyTN68NzOvqk4InhAs8BmlnewoaycUEzkhnMtWkp3qYF2v1x-7f_L96jilOS4hMO6EPKjm1_Xjy9Ps5hwBMqsRFk6jRTDWoxyQTdktIFu0DNmO2YFHKTiPbAzJhRF9uvyGUgF47wqqgC1KNjqbkBtRfrNomsE7GNGlX6ajam8An-zx9j2sXm5vnq_u69nD3fTqclbrlpFcG9FZiwcqteREdgYIM0QzDqTrQWNquISe98KwnurOtJSX_YH1XcsxbgQ0h9V0w2sCzNUylhXiSgVw6rsQ4quCmJ32VmnWN5wZSlpu214PguqGkCLT9A0t4oXrdMO1jOH9o9xDzcNHHMv4irZcMCYkZgXFNihdDpOiHX5VCVZrl9SPS2rtktq6VPouNn1uHEJcwGeI3qgMKx_iEGHULqnmf4ovuDeX8Q</recordid><startdate>20191218</startdate><enddate>20191218</enddate><creator>Gianinetto, Marco</creator><creator>Aiello, Martina</creator><creator>Polinelli, Francesco</creator><creator>Frassy, Federico</creator><creator>Rulli, Maria Cristina</creator><creator>Ravazzani, Giovanni</creator><creator>Bocchiola, Daniele</creator><creator>Chiarelli, Davide Danilo</creator><creator>Soncini, Andrea</creator><creator>Vezzoli, Renata</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6850-0883</orcidid><orcidid>https://orcid.org/0000-0001-9011-616X</orcidid></search><sort><creationdate>20191218</creationdate><title>D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps</title><author>Gianinetto, Marco ; Aiello, Martina ; Polinelli, Francesco ; Frassy, Federico ; Rulli, Maria Cristina ; Ravazzani, Giovanni ; Bocchiola, Daniele ; Chiarelli, Davide Danilo ; Soncini, Andrea ; Vezzoli, Renata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d87ee0f29c96197da15d1c56a17bac02d69ab6b8d5b2c7d426972a5b7460038a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerated erosion</topic><topic>Alpine basin</topic><topic>Climate and human activity</topic><topic>Climate change</topic><topic>Dynamic models</topic><topic>Erosion processes</topic><topic>Erosion rates</topic><topic>Geology</topic><topic>Human influences</topic><topic>Hydrogeology</topic><topic>Land cover</topic><topic>Land use</topic><topic>natural hazards</topic><topic>NDVI</topic><topic>Nonrenewable resources</topic><topic>Policies</topic><topic>Rainfall</topic><topic>Renewable resources</topic><topic>RUSLE model</topic><topic>Satellite time series</topic><topic>Snow cover</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soil loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gianinetto, Marco</creatorcontrib><creatorcontrib>Aiello, Martina</creatorcontrib><creatorcontrib>Polinelli, Francesco</creatorcontrib><creatorcontrib>Frassy, Federico</creatorcontrib><creatorcontrib>Rulli, Maria Cristina</creatorcontrib><creatorcontrib>Ravazzani, Giovanni</creatorcontrib><creatorcontrib>Bocchiola, Daniele</creatorcontrib><creatorcontrib>Chiarelli, Davide Danilo</creatorcontrib><creatorcontrib>Soncini, Andrea</creatorcontrib><creatorcontrib>Vezzoli, Renata</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>European journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gianinetto, Marco</au><au>Aiello, Martina</au><au>Polinelli, Francesco</au><au>Frassy, Federico</au><au>Rulli, Maria Cristina</au><au>Ravazzani, Giovanni</au><au>Bocchiola, Daniele</au><au>Chiarelli, Davide Danilo</au><au>Soncini, Andrea</au><au>Vezzoli, Renata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps</atitle><jtitle>European journal of remote sensing</jtitle><date>2019-12-18</date><risdate>2019</risdate><volume>52</volume><issue>sup4</issue><spage>34</spage><epage>53</epage><pages>34-53</pages><issn>2279-7254</issn><eissn>2279-7254</eissn><abstract>Soil erosion is addressed as one of the main hydrogeological risks in the European Union. Since the average annual soil loss rate exceeds the annual average formation rate, soil is considered as a non-renewable resource. Besides, human activities, human-induced forces and climate change have further accelerated the erosion processes. Therefore, understanding soil erosion spatial and temporal trends could provide important information for supporting government land-use policies and strategies for its reduction. This paper describes the Dynamic Revised Universal Soil Loss Equation (D-RUSLE) model, a modified version of the well-known RUSLE model. The RUSLE model formulation was modified to include variations in rainfall erosivity and land-cover to provide more accurate estimates of the potential soil erosion in the Italian Alps. Specifically, the modelling of snow occurrence and the inclusion of Earth Observation data allow dynamic estimation of both spatial and temporal land-cover changes. Results obtained in Val Camonica (Italy) show that RUSLE model tends to overestimate erosion rates in Autumn/Winter because not considering snow cover and vegetation dynamics. The assimilation of satellite-derived information in D-RUSLE allows a better representation of soil erosion forcing, thus proving a more accurate erosion estimate for supporting government land-use policies and strategies for reducing this phenomenon.</abstract><cop>Cagiari</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/22797254.2019.1669491</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6850-0883</orcidid><orcidid>https://orcid.org/0000-0001-9011-616X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2279-7254
ispartof European journal of remote sensing, 2019-12, Vol.52 (sup4), p.34-53
issn 2279-7254
2279-7254
language eng
recordid cdi_proquest_journals_2468558905
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals
subjects Accelerated erosion
Alpine basin
Climate and human activity
Climate change
Dynamic models
Erosion processes
Erosion rates
Geology
Human influences
Hydrogeology
Land cover
Land use
natural hazards
NDVI
Nonrenewable resources
Policies
Rainfall
Renewable resources
RUSLE model
Satellite time series
Snow cover
Soil dynamics
Soil erosion
Soil loss
title D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-RUSLE:%20a%20dynamic%20model%20to%20estimate%20potential%20soil%20erosion%20with%20satellite%20time%20series%20in%20the%20Italian%20Alps&rft.jtitle=European%20journal%20of%20remote%20sensing&rft.au=Gianinetto,%20Marco&rft.date=2019-12-18&rft.volume=52&rft.issue=sup4&rft.spage=34&rft.epage=53&rft.pages=34-53&rft.issn=2279-7254&rft.eissn=2279-7254&rft_id=info:doi/10.1080/22797254.2019.1669491&rft_dat=%3Cproquest_infor%3E2468558905%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468558905&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c5b365d2146e4bcf82c311bac3b32197&rfr_iscdi=true