Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)

It is generally accepted that severe plastic deformation (SPD) has the ability to produce ultrafinegrained (UFG) and nanocrystalline materials in bulk. Recent developments in high pressure torsion (HPT) processes have led to the production of bimetallic composites using copper, aluminum or magnesium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2020-12, Vol.10 (12), p.1629, Article 1629
Hauptverfasser: Gurau, Gheorghe, Gurau, Carmela, Braz Fernandes, Francisco Manuel, Alexandru, Petrica, Sampath, Vedamanickam, Marin, Mihaela, Galbinasu, Bogdan Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1629
container_title Metals (Basel )
container_volume 10
creator Gurau, Gheorghe
Gurau, Carmela
Braz Fernandes, Francisco Manuel
Alexandru, Petrica
Sampath, Vedamanickam
Marin, Mihaela
Galbinasu, Bogdan Mihai
description It is generally accepted that severe plastic deformation (SPD) has the ability to produce ultrafinegrained (UFG) and nanocrystalline materials in bulk. Recent developments in high pressure torsion (HPT) processes have led to the production of bimetallic composites using copper, aluminum or magnesium alloys. This article outlines a new approach to fabricate multilayered Ni-Ti nanocomposites by a patented SPD technique, namely, high speed high pressure torsion (HSHPT). The multilayered composite discs consist of Ni-Ti alloys of different composition: a shape memory alloy (SMA) Ti-rich, whose Mf > RT, and an SMA Ni-rich, whose Af < RT. The composites were designed to have 2 to 32 layers of both alloys. The layers were arranged in different sequences to improve the shape recovery on both heating and cooling of nickel-titanium alloys. The manufacturing process of Ni-Ti multilayers is explained in this work. The evolution of the microstructure was traced using optical, scanning electron and transmission electron microscopes. The effectiveness of the bonding of the multilayered composites was investigated. The shape memory characteristics and the martensitic transition of the nickel-titanium nanocomposites were studied by differential scanning calorimetry (DSC). This method opens up new possibilities for designing various layered metal-matrix composites achieving the best combination of shape memory, deformability and tensile strength.
doi_str_mv 10.3390/met10121629
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2468525800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55340b93a0cb4bac937ee9b8c0c271fe</doaj_id><sourcerecordid>2468525800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-2fe2a78dbccdb282217eefd58c43246e2e061b2e7ef9814eb911a31d17bff1853</originalsourceid><addsrcrecordid>eNqNkU1v3CAQhq2qlRKlOeUPIPXSqnLLhz_gWFlNN1KaRNrtGQEeElZesx2wqv33JdkqzTFcGJhn3hl4q-qC0S9CKPp1B5lRxlnH1ZvqlNO-rZuesrcv4pPqPKUtLUvyjip1Wi3rjIvLC5qJDA8GjcuAIeXgEome_FymHCZzAISR3IR6E8iNmaOLu31MIQO5NBaDM7mk7YGswv0DWe-hnJ7CO4SUFgSyiZhCnMnH1Xp1t_n0vnrnzZTg_N9-Vv26_L4ZVvX17Y-r4dt17RpBc809cNPL0To3Wi45Zz2AH1tZ0rzpgAPtmOXQg1eSNWAVY0awkfXWeyZbcVZdHXXHaLZ6j2Fn8KCjCfrpIuK9NljeOoFuW9FQq4ShzjbWOCVKL2Wlo473zEPR-nDU2mP8vUDKehsXnMv4uswiW95KSgv1-Ug5jCkh-OeujOpHm_QLm_7Tf8BGn1yA2cFzRbGpo7xRqnl0jBVavp4eQja5fPkQlzmLv5Mnphg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468525800</pqid></control><display><type>article</type><title>Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Gurau, Gheorghe ; Gurau, Carmela ; Braz Fernandes, Francisco Manuel ; Alexandru, Petrica ; Sampath, Vedamanickam ; Marin, Mihaela ; Galbinasu, Bogdan Mihai</creator><creatorcontrib>Gurau, Gheorghe ; Gurau, Carmela ; Braz Fernandes, Francisco Manuel ; Alexandru, Petrica ; Sampath, Vedamanickam ; Marin, Mihaela ; Galbinasu, Bogdan Mihai</creatorcontrib><description>It is generally accepted that severe plastic deformation (SPD) has the ability to produce ultrafinegrained (UFG) and nanocrystalline materials in bulk. Recent developments in high pressure torsion (HPT) processes have led to the production of bimetallic composites using copper, aluminum or magnesium alloys. This article outlines a new approach to fabricate multilayered Ni-Ti nanocomposites by a patented SPD technique, namely, high speed high pressure torsion (HSHPT). The multilayered composite discs consist of Ni-Ti alloys of different composition: a shape memory alloy (SMA) Ti-rich, whose Mf &gt; RT, and an SMA Ni-rich, whose Af &lt; RT. The composites were designed to have 2 to 32 layers of both alloys. The layers were arranged in different sequences to improve the shape recovery on both heating and cooling of nickel-titanium alloys. The manufacturing process of Ni-Ti multilayers is explained in this work. The evolution of the microstructure was traced using optical, scanning electron and transmission electron microscopes. The effectiveness of the bonding of the multilayered composites was investigated. The shape memory characteristics and the martensitic transition of the nickel-titanium nanocomposites were studied by differential scanning calorimetry (DSC). This method opens up new possibilities for designing various layered metal-matrix composites achieving the best combination of shape memory, deformability and tensile strength.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met10121629</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Alloys ; Aluminum ; Bimetals ; composites ; Cooling ; Formability ; Grain boundaries ; High speed ; High temperature ; HSHPT ; Investigations ; Magnesium base alloys ; Martensitic transformations ; Materials Science ; Materials Science, Multidisciplinary ; Metal matrix composites ; Metallurgy &amp; Metallurgical Engineering ; Microscopes ; Microscopy ; Multilayers ; nano multilayers ; Nanocomposites ; Ni-Ti ; Nickel base alloys ; Plastic deformation ; Science &amp; Technology ; Shape memory alloys ; SPD ; Technology ; Tensile strength</subject><ispartof>Metals (Basel ), 2020-12, Vol.10 (12), p.1629, Article 1629</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000602499400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c430t-2fe2a78dbccdb282217eefd58c43246e2e061b2e7ef9814eb911a31d17bff1853</citedby><cites>FETCH-LOGICAL-c430t-2fe2a78dbccdb282217eefd58c43246e2e061b2e7ef9814eb911a31d17bff1853</cites><orcidid>0000-0003-3185-0019 ; 0000-0002-0762-1016 ; 0000-0001-8512-080X ; 0000-0002-9108-9658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Gurau, Gheorghe</creatorcontrib><creatorcontrib>Gurau, Carmela</creatorcontrib><creatorcontrib>Braz Fernandes, Francisco Manuel</creatorcontrib><creatorcontrib>Alexandru, Petrica</creatorcontrib><creatorcontrib>Sampath, Vedamanickam</creatorcontrib><creatorcontrib>Marin, Mihaela</creatorcontrib><creatorcontrib>Galbinasu, Bogdan Mihai</creatorcontrib><title>Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)</title><title>Metals (Basel )</title><addtitle>METALS-BASEL</addtitle><description>It is generally accepted that severe plastic deformation (SPD) has the ability to produce ultrafinegrained (UFG) and nanocrystalline materials in bulk. Recent developments in high pressure torsion (HPT) processes have led to the production of bimetallic composites using copper, aluminum or magnesium alloys. This article outlines a new approach to fabricate multilayered Ni-Ti nanocomposites by a patented SPD technique, namely, high speed high pressure torsion (HSHPT). The multilayered composite discs consist of Ni-Ti alloys of different composition: a shape memory alloy (SMA) Ti-rich, whose Mf &gt; RT, and an SMA Ni-rich, whose Af &lt; RT. The composites were designed to have 2 to 32 layers of both alloys. The layers were arranged in different sequences to improve the shape recovery on both heating and cooling of nickel-titanium alloys. The manufacturing process of Ni-Ti multilayers is explained in this work. The evolution of the microstructure was traced using optical, scanning electron and transmission electron microscopes. The effectiveness of the bonding of the multilayered composites was investigated. The shape memory characteristics and the martensitic transition of the nickel-titanium nanocomposites were studied by differential scanning calorimetry (DSC). This method opens up new possibilities for designing various layered metal-matrix composites achieving the best combination of shape memory, deformability and tensile strength.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Bimetals</subject><subject>composites</subject><subject>Cooling</subject><subject>Formability</subject><subject>Grain boundaries</subject><subject>High speed</subject><subject>High temperature</subject><subject>HSHPT</subject><subject>Investigations</subject><subject>Magnesium base alloys</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal matrix composites</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Multilayers</subject><subject>nano multilayers</subject><subject>Nanocomposites</subject><subject>Ni-Ti</subject><subject>Nickel base alloys</subject><subject>Plastic deformation</subject><subject>Science &amp; Technology</subject><subject>Shape memory alloys</subject><subject>SPD</subject><subject>Technology</subject><subject>Tensile strength</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v3CAQhq2qlRKlOeUPIPXSqnLLhz_gWFlNN1KaRNrtGQEeElZesx2wqv33JdkqzTFcGJhn3hl4q-qC0S9CKPp1B5lRxlnH1ZvqlNO-rZuesrcv4pPqPKUtLUvyjip1Wi3rjIvLC5qJDA8GjcuAIeXgEome_FymHCZzAISR3IR6E8iNmaOLu31MIQO5NBaDM7mk7YGswv0DWe-hnJ7CO4SUFgSyiZhCnMnH1Xp1t_n0vnrnzZTg_N9-Vv26_L4ZVvX17Y-r4dt17RpBc809cNPL0To3Wi45Zz2AH1tZ0rzpgAPtmOXQg1eSNWAVY0awkfXWeyZbcVZdHXXHaLZ6j2Fn8KCjCfrpIuK9NljeOoFuW9FQq4ShzjbWOCVKL2Wlo473zEPR-nDU2mP8vUDKehsXnMv4uswiW95KSgv1-Ug5jCkh-OeujOpHm_QLm_7Tf8BGn1yA2cFzRbGpo7xRqnl0jBVavp4eQja5fPkQlzmLv5Mnphg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gurau, Gheorghe</creator><creator>Gurau, Carmela</creator><creator>Braz Fernandes, Francisco Manuel</creator><creator>Alexandru, Petrica</creator><creator>Sampath, Vedamanickam</creator><creator>Marin, Mihaela</creator><creator>Galbinasu, Bogdan Mihai</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3185-0019</orcidid><orcidid>https://orcid.org/0000-0002-0762-1016</orcidid><orcidid>https://orcid.org/0000-0001-8512-080X</orcidid><orcidid>https://orcid.org/0000-0002-9108-9658</orcidid></search><sort><creationdate>20201201</creationdate><title>Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)</title><author>Gurau, Gheorghe ; Gurau, Carmela ; Braz Fernandes, Francisco Manuel ; Alexandru, Petrica ; Sampath, Vedamanickam ; Marin, Mihaela ; Galbinasu, Bogdan Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-2fe2a78dbccdb282217eefd58c43246e2e061b2e7ef9814eb911a31d17bff1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Bimetals</topic><topic>composites</topic><topic>Cooling</topic><topic>Formability</topic><topic>Grain boundaries</topic><topic>High speed</topic><topic>High temperature</topic><topic>HSHPT</topic><topic>Investigations</topic><topic>Magnesium base alloys</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal matrix composites</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Multilayers</topic><topic>nano multilayers</topic><topic>Nanocomposites</topic><topic>Ni-Ti</topic><topic>Nickel base alloys</topic><topic>Plastic deformation</topic><topic>Science &amp; Technology</topic><topic>Shape memory alloys</topic><topic>SPD</topic><topic>Technology</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurau, Gheorghe</creatorcontrib><creatorcontrib>Gurau, Carmela</creatorcontrib><creatorcontrib>Braz Fernandes, Francisco Manuel</creatorcontrib><creatorcontrib>Alexandru, Petrica</creatorcontrib><creatorcontrib>Sampath, Vedamanickam</creatorcontrib><creatorcontrib>Marin, Mihaela</creatorcontrib><creatorcontrib>Galbinasu, Bogdan Mihai</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurau, Gheorghe</au><au>Gurau, Carmela</au><au>Braz Fernandes, Francisco Manuel</au><au>Alexandru, Petrica</au><au>Sampath, Vedamanickam</au><au>Marin, Mihaela</au><au>Galbinasu, Bogdan Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)</atitle><jtitle>Metals (Basel )</jtitle><stitle>METALS-BASEL</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>1629</spage><pages>1629-</pages><artnum>1629</artnum><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>It is generally accepted that severe plastic deformation (SPD) has the ability to produce ultrafinegrained (UFG) and nanocrystalline materials in bulk. Recent developments in high pressure torsion (HPT) processes have led to the production of bimetallic composites using copper, aluminum or magnesium alloys. This article outlines a new approach to fabricate multilayered Ni-Ti nanocomposites by a patented SPD technique, namely, high speed high pressure torsion (HSHPT). The multilayered composite discs consist of Ni-Ti alloys of different composition: a shape memory alloy (SMA) Ti-rich, whose Mf &gt; RT, and an SMA Ni-rich, whose Af &lt; RT. The composites were designed to have 2 to 32 layers of both alloys. The layers were arranged in different sequences to improve the shape recovery on both heating and cooling of nickel-titanium alloys. The manufacturing process of Ni-Ti multilayers is explained in this work. The evolution of the microstructure was traced using optical, scanning electron and transmission electron microscopes. The effectiveness of the bonding of the multilayered composites was investigated. The shape memory characteristics and the martensitic transition of the nickel-titanium nanocomposites were studied by differential scanning calorimetry (DSC). This method opens up new possibilities for designing various layered metal-matrix composites achieving the best combination of shape memory, deformability and tensile strength.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/met10121629</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3185-0019</orcidid><orcidid>https://orcid.org/0000-0002-0762-1016</orcidid><orcidid>https://orcid.org/0000-0001-8512-080X</orcidid><orcidid>https://orcid.org/0000-0002-9108-9658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2020-12, Vol.10 (12), p.1629, Article 1629
issn 2075-4701
2075-4701
language eng
recordid cdi_proquest_journals_2468525800
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Alloys
Aluminum
Bimetals
composites
Cooling
Formability
Grain boundaries
High speed
High temperature
HSHPT
Investigations
Magnesium base alloys
Martensitic transformations
Materials Science
Materials Science, Multidisciplinary
Metal matrix composites
Metallurgy & Metallurgical Engineering
Microscopes
Microscopy
Multilayers
nano multilayers
Nanocomposites
Ni-Ti
Nickel base alloys
Plastic deformation
Science & Technology
Shape memory alloys
SPD
Technology
Tensile strength
title Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Characteristics%20of%20Multilayered%20Ni-Ti%20Nanocomposite%20Fabricated%20by%20High%20Speed%20High%20Pressure%20Torsion%20(HSHPT)&rft.jtitle=Metals%20(Basel%20)&rft.au=Gurau,%20Gheorghe&rft.date=2020-12-01&rft.volume=10&rft.issue=12&rft.spage=1629&rft.pages=1629-&rft.artnum=1629&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met10121629&rft_dat=%3Cproquest_webof%3E2468525800%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468525800&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_55340b93a0cb4bac937ee9b8c0c271fe&rfr_iscdi=true