Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film

All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-12, Vol.8 (46), p.1652-16526
Hauptverfasser: Guvenc, C. Meric, Polat, Nahit, Balci, Sinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16526
container_issue 46
container_start_page 1652
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Guvenc, C. Meric
Polat, Nahit
Balci, Sinan
description All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI 3 nanoplatelets, CsPbI 3 nanowires, and CsPb(Br/I) 3 nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension. We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.
doi_str_mv 10.1039/d0tc04209a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468425333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468425333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov3oWAN2E12d2km2OpVoWCB-tRlmx2oqnZzZqkYv-9qZU6MMwb3scMPITOKbmmpBA3LYmKlDkR8giNcsJINmVFeXzQOT9FkxDWJFVFecXFCL0-R-_6NzxYGTrXZ_CtTHQ9Vm4zWJMMs9PWOtNKi9-lNS3gAbz7Ch8mAu5l75TfhihtwD1IjyXuIG1YG9udoROdDJj8zTF6Wdyt5g_Z8un-cT5bZqqgVcyE1G3LRENIoSSjJZBST6lmXHLBVGqmQUgKecMVCEVocihroGxVk4NoizG63N8dvPvcQIj12m18n17WecmrMmdFqjG62lPKuxA86HrwppN-W1NS7xKsb8lq_pvgLMEXe9gHdeD-Ey5-AEI8bqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468425333</pqid></control><display><type>article</type><title>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</title><source>Royal Society Of Chemistry Journals</source><creator>Guvenc, C. Meric ; Polat, Nahit ; Balci, Sinan</creator><creatorcontrib>Guvenc, C. Meric ; Polat, Nahit ; Balci, Sinan</creatorcontrib><description>All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI 3 nanoplatelets, CsPbI 3 nanowires, and CsPb(Br/I) 3 nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension. We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc04209a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Colloids ; Composition ; Coupling ; Excitons ; Halides ; Lead compounds ; Metal films ; Metal halides ; Morphology ; Nanocrystals ; Nanowires ; Optical properties ; Oscillator strengths ; Perovskites ; Visible spectrum</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (46), p.1652-16526</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</citedby><cites>FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</cites><orcidid>0000-0001-9197-5310 ; 0000-0002-9809-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guvenc, C. Meric</creatorcontrib><creatorcontrib>Polat, Nahit</creatorcontrib><creatorcontrib>Balci, Sinan</creatorcontrib><title>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI 3 nanoplatelets, CsPbI 3 nanowires, and CsPb(Br/I) 3 nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension. We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.</description><subject>Colloids</subject><subject>Composition</subject><subject>Coupling</subject><subject>Excitons</subject><subject>Halides</subject><subject>Lead compounds</subject><subject>Metal films</subject><subject>Metal halides</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanowires</subject><subject>Optical properties</subject><subject>Oscillator strengths</subject><subject>Perovskites</subject><subject>Visible spectrum</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov3oWAN2E12d2km2OpVoWCB-tRlmx2oqnZzZqkYv-9qZU6MMwb3scMPITOKbmmpBA3LYmKlDkR8giNcsJINmVFeXzQOT9FkxDWJFVFecXFCL0-R-_6NzxYGTrXZ_CtTHQ9Vm4zWJMMs9PWOtNKi9-lNS3gAbz7Ch8mAu5l75TfhihtwD1IjyXuIG1YG9udoROdDJj8zTF6Wdyt5g_Z8un-cT5bZqqgVcyE1G3LRENIoSSjJZBST6lmXHLBVGqmQUgKecMVCEVocihroGxVk4NoizG63N8dvPvcQIj12m18n17WecmrMmdFqjG62lPKuxA86HrwppN-W1NS7xKsb8lq_pvgLMEXe9gHdeD-Ey5-AEI8bqY</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Guvenc, C. Meric</creator><creator>Polat, Nahit</creator><creator>Balci, Sinan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9197-5310</orcidid><orcidid>https://orcid.org/0000-0002-9809-8688</orcidid></search><sort><creationdate>20201214</creationdate><title>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</title><author>Guvenc, C. Meric ; Polat, Nahit ; Balci, Sinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Colloids</topic><topic>Composition</topic><topic>Coupling</topic><topic>Excitons</topic><topic>Halides</topic><topic>Lead compounds</topic><topic>Metal films</topic><topic>Metal halides</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanowires</topic><topic>Optical properties</topic><topic>Oscillator strengths</topic><topic>Perovskites</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guvenc, C. Meric</creatorcontrib><creatorcontrib>Polat, Nahit</creatorcontrib><creatorcontrib>Balci, Sinan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guvenc, C. Meric</au><au>Polat, Nahit</au><au>Balci, Sinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-12-14</date><risdate>2020</risdate><volume>8</volume><issue>46</issue><spage>1652</spage><epage>16526</epage><pages>1652-16526</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI 3 nanoplatelets, CsPbI 3 nanowires, and CsPb(Br/I) 3 nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension. We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc04209a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9197-5310</orcidid><orcidid>https://orcid.org/0000-0002-9809-8688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (46), p.1652-16526
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2468425333
source Royal Society Of Chemistry Journals
subjects Colloids
Composition
Coupling
Excitons
Halides
Lead compounds
Metal films
Metal halides
Morphology
Nanocrystals
Nanowires
Optical properties
Oscillator strengths
Perovskites
Visible spectrum
title Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20plasmon-exciton%20coupling%20in%20colloidal%20halide%20perovskite%20nanocrystals%20near%20a%20metal%20film&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Guvenc,%20C.%20Meric&rft.date=2020-12-14&rft.volume=8&rft.issue=46&rft.spage=1652&rft.epage=16526&rft.pages=1652-16526&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc04209a&rft_dat=%3Cproquest_cross%3E2468425333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468425333&rft_id=info:pmid/&rfr_iscdi=true