Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film
All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly qu...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-12, Vol.8 (46), p.1652-16526 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16526 |
---|---|
container_issue | 46 |
container_start_page | 1652 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 8 |
creator | Guvenc, C. Meric Polat, Nahit Balci, Sinan |
description | All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI
3
nanoplatelets, CsPbI
3
nanowires, and CsPb(Br/I)
3
nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension.
We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. |
doi_str_mv | 10.1039/d0tc04209a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468425333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468425333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov3oWAN2E12d2km2OpVoWCB-tRlmx2oqnZzZqkYv-9qZU6MMwb3scMPITOKbmmpBA3LYmKlDkR8giNcsJINmVFeXzQOT9FkxDWJFVFecXFCL0-R-_6NzxYGTrXZ_CtTHQ9Vm4zWJMMs9PWOtNKi9-lNS3gAbz7Ch8mAu5l75TfhihtwD1IjyXuIG1YG9udoROdDJj8zTF6Wdyt5g_Z8un-cT5bZqqgVcyE1G3LRENIoSSjJZBST6lmXHLBVGqmQUgKecMVCEVocihroGxVk4NoizG63N8dvPvcQIj12m18n17WecmrMmdFqjG62lPKuxA86HrwppN-W1NS7xKsb8lq_pvgLMEXe9gHdeD-Ey5-AEI8bqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468425333</pqid></control><display><type>article</type><title>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</title><source>Royal Society Of Chemistry Journals</source><creator>Guvenc, C. Meric ; Polat, Nahit ; Balci, Sinan</creator><creatorcontrib>Guvenc, C. Meric ; Polat, Nahit ; Balci, Sinan</creatorcontrib><description>All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI
3
nanoplatelets, CsPbI
3
nanowires, and CsPb(Br/I)
3
nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension.
We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc04209a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Colloids ; Composition ; Coupling ; Excitons ; Halides ; Lead compounds ; Metal films ; Metal halides ; Morphology ; Nanocrystals ; Nanowires ; Optical properties ; Oscillator strengths ; Perovskites ; Visible spectrum</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (46), p.1652-16526</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</citedby><cites>FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</cites><orcidid>0000-0001-9197-5310 ; 0000-0002-9809-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guvenc, C. Meric</creatorcontrib><creatorcontrib>Polat, Nahit</creatorcontrib><creatorcontrib>Balci, Sinan</creatorcontrib><title>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI
3
nanoplatelets, CsPbI
3
nanowires, and CsPb(Br/I)
3
nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension.
We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.</description><subject>Colloids</subject><subject>Composition</subject><subject>Coupling</subject><subject>Excitons</subject><subject>Halides</subject><subject>Lead compounds</subject><subject>Metal films</subject><subject>Metal halides</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanowires</subject><subject>Optical properties</subject><subject>Oscillator strengths</subject><subject>Perovskites</subject><subject>Visible spectrum</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov3oWAN2E12d2km2OpVoWCB-tRlmx2oqnZzZqkYv-9qZU6MMwb3scMPITOKbmmpBA3LYmKlDkR8giNcsJINmVFeXzQOT9FkxDWJFVFecXFCL0-R-_6NzxYGTrXZ_CtTHQ9Vm4zWJMMs9PWOtNKi9-lNS3gAbz7Ch8mAu5l75TfhihtwD1IjyXuIG1YG9udoROdDJj8zTF6Wdyt5g_Z8un-cT5bZqqgVcyE1G3LRENIoSSjJZBST6lmXHLBVGqmQUgKecMVCEVocihroGxVk4NoizG63N8dvPvcQIj12m18n17WecmrMmdFqjG62lPKuxA86HrwppN-W1NS7xKsb8lq_pvgLMEXe9gHdeD-Ey5-AEI8bqY</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Guvenc, C. Meric</creator><creator>Polat, Nahit</creator><creator>Balci, Sinan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9197-5310</orcidid><orcidid>https://orcid.org/0000-0002-9809-8688</orcidid></search><sort><creationdate>20201214</creationdate><title>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</title><author>Guvenc, C. Meric ; Polat, Nahit ; Balci, Sinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-9afdd59b003ca514e04f71f56a695c6955fe9a1e2b6ce9c0156a15be4dcb2e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Colloids</topic><topic>Composition</topic><topic>Coupling</topic><topic>Excitons</topic><topic>Halides</topic><topic>Lead compounds</topic><topic>Metal films</topic><topic>Metal halides</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanowires</topic><topic>Optical properties</topic><topic>Oscillator strengths</topic><topic>Perovskites</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guvenc, C. Meric</creatorcontrib><creatorcontrib>Polat, Nahit</creatorcontrib><creatorcontrib>Balci, Sinan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guvenc, C. Meric</au><au>Polat, Nahit</au><au>Balci, Sinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-12-14</date><risdate>2020</risdate><volume>8</volume><issue>46</issue><spage>1652</spage><epage>16526</epage><pages>1652-16526</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>All inorganic colloidal halide perovskite nanoplatelets and nanowires are highly anisotropic shaped semiconductor nanocrystals with highly tunable optical properties in the visible spectrum. These nanocrystals have large exciton binding energies and high oscillator strengths due to their strongly quantum confined natures. The optical properties of the halide perovskites are tunable by variation of halide composition and morphology of the nanocrystals. We herein demonstrate that colloidal perovskite nanocrystals (NCs) placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime. The optical properties of all-inorganic lead halide perovskite NCs were controlled by colloidally synthesizing NCs with different morphologies such as nanowires and nanoplatelets or by controlling the composition of the halides in the NCs. The experimentally observed Rabi splitting energies are around 90 meV, 70 meV, and 55 meV for CsPbI
3
nanoplatelets, CsPbI
3
nanowires, and CsPb(Br/I)
3
nanoplatelets, respectively. In addition, the numerical simulations are in good agreement with the experimentally obtained data. The results show that colloidal all-inorganic halide perovskite NCs are promising and strong candidates for studying light-matter interaction at nanoscale dimension.
We herein demonstrate that colloidal perovskite nanoplatelets and nanowires placed in close proximity to chemically functionalized metal films show mixed plasmon-exciton formation, plexciton formation, in the strong coupling regime.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc04209a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9197-5310</orcidid><orcidid>https://orcid.org/0000-0002-9809-8688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (46), p.1652-16526 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2468425333 |
source | Royal Society Of Chemistry Journals |
subjects | Colloids Composition Coupling Excitons Halides Lead compounds Metal films Metal halides Morphology Nanocrystals Nanowires Optical properties Oscillator strengths Perovskites Visible spectrum |
title | Strong plasmon-exciton coupling in colloidal halide perovskite nanocrystals near a metal film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20plasmon-exciton%20coupling%20in%20colloidal%20halide%20perovskite%20nanocrystals%20near%20a%20metal%20film&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Guvenc,%20C.%20Meric&rft.date=2020-12-14&rft.volume=8&rft.issue=46&rft.spage=1652&rft.epage=16526&rft.pages=1652-16526&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc04209a&rft_dat=%3Cproquest_cross%3E2468425333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468425333&rft_id=info:pmid/&rfr_iscdi=true |