Novel strategies for modal-based structural material identification
•Modal-based methods for model calibration in structural dynamics.•Measured modal data to extract structural model parameters for complex problems.•Gradient-based optimization problems using eigenvalues and eigenvectors.•Mode Separation via Projection algorithm for problems with repeated eigenvalues...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2021-02, Vol.149, p.107295, Article 107295 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107295 |
container_title | Mechanical systems and signal processing |
container_volume | 149 |
creator | Bunting, Gregory Miller, Scott T. Walsh, Timothy F. Dohrmann, Clark R. Aquino, Wilkins |
description | •Modal-based methods for model calibration in structural dynamics.•Measured modal data to extract structural model parameters for complex problems.•Gradient-based optimization problems using eigenvalues and eigenvectors.•Mode Separation via Projection algorithm for problems with repeated eigenvalues.•Implementation in a massively parallel finite element structural dynamics framework.
In this work, we present modal-based methods for model calibration in structural dynamics, and address several key challenges in the solution of gradient-based optimization problems with eigenvalues and eigenvectors, including the solution of singular Helmholtz problems encountered in sensitivity calculations, non-differentiable objective functions caused by mode swapping during optimization, and cases with repeated eigenvalues. Unlike previous literature that relied on direct solution of the eigenvector adjoint equations, we present a parallel iterative domain decomposition strategy (Adjoint Computation via Modal Superposition with Truncation Augmentation) for the solution of the singular Helmholtz problems. For problems with repeated eigenvalues we present a novel Mode Separation via Projection algorithm, and in order to address mode swapping between inverse iterations we present a novel Injective mode ordering metric. We present the implementation of these methods in a massively parallel finite element framework with the ability to use measured modal data to extract unknown structural model parameters from large complex problems. A series of increasingly complex numerical examples are presented that demonstrate the implementation and performance of the methods in a massively parallel finite element framework [7,5], using gradient-based optimization techniques in the Rapid Optimization Library (ROL) [21]. |
doi_str_mv | 10.1016/j.ymssp.2020.107295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468384577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327020306816</els_id><sourcerecordid>2468384577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-980fe26863ac5e56ec543d1ca9fc934fc6c159d4f86159d111822212d91d10603</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8Fz13z0abJwYMsfsGiFz2HmEwkpW3WJF3Yf29rPXt6h5n3nWEehK4J3hBM-G27OfYp7TcU07nTUFmfoBXBkpeEEn6KVlgIUTLa4HN0kVKLMZYV5iu0fQ0H6IqUo87w5SEVLsSiD1Z35adOYOfRaPIYdVf0kyf6qfAWhuydNzr7MFyiM6e7BFd_ukYfjw_v2-dy9_b0sr3flYY1PJdSYAeUC860qaHmYOqKWWK0dEayyhluSC1t5QSflRAiKKWEWkkswRyzNbpZ9u5j-B4hZdWGMQ7TSUUrLpio6qaZXGxxmRhSiuDUPvpex6MiWM20VKt-aamZllpoTam7JQXTAwcPUSXjYTBgfQSTlQ3-3_wPH7lz0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468384577</pqid></control><display><type>article</type><title>Novel strategies for modal-based structural material identification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bunting, Gregory ; Miller, Scott T. ; Walsh, Timothy F. ; Dohrmann, Clark R. ; Aquino, Wilkins</creator><creatorcontrib>Bunting, Gregory ; Miller, Scott T. ; Walsh, Timothy F. ; Dohrmann, Clark R. ; Aquino, Wilkins</creatorcontrib><description>•Modal-based methods for model calibration in structural dynamics.•Measured modal data to extract structural model parameters for complex problems.•Gradient-based optimization problems using eigenvalues and eigenvectors.•Mode Separation via Projection algorithm for problems with repeated eigenvalues.•Implementation in a massively parallel finite element structural dynamics framework.
In this work, we present modal-based methods for model calibration in structural dynamics, and address several key challenges in the solution of gradient-based optimization problems with eigenvalues and eigenvectors, including the solution of singular Helmholtz problems encountered in sensitivity calculations, non-differentiable objective functions caused by mode swapping during optimization, and cases with repeated eigenvalues. Unlike previous literature that relied on direct solution of the eigenvector adjoint equations, we present a parallel iterative domain decomposition strategy (Adjoint Computation via Modal Superposition with Truncation Augmentation) for the solution of the singular Helmholtz problems. For problems with repeated eigenvalues we present a novel Mode Separation via Projection algorithm, and in order to address mode swapping between inverse iterations we present a novel Injective mode ordering metric. We present the implementation of these methods in a massively parallel finite element framework with the ability to use measured modal data to extract unknown structural model parameters from large complex problems. A series of increasingly complex numerical examples are presented that demonstrate the implementation and performance of the methods in a massively parallel finite element framework [7,5], using gradient-based optimization techniques in the Rapid Optimization Library (ROL) [21].</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2020.107295</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Domain decomposition methods ; Eigenvalues ; Eigenvector ; Eigenvectors ; Inverse methods ; Iterative methods ; Material-ID ; Modal data ; Mode superposition method ; Mode swapping ; Optimization ; Optimization techniques ; Structural dynamics ; Structural models</subject><ispartof>Mechanical systems and signal processing, 2021-02, Vol.149, p.107295, Article 107295</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-980fe26863ac5e56ec543d1ca9fc934fc6c159d4f86159d111822212d91d10603</citedby><cites>FETCH-LOGICAL-c376t-980fe26863ac5e56ec543d1ca9fc934fc6c159d4f86159d111822212d91d10603</cites><orcidid>0000-0002-0523-4602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327020306816$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bunting, Gregory</creatorcontrib><creatorcontrib>Miller, Scott T.</creatorcontrib><creatorcontrib>Walsh, Timothy F.</creatorcontrib><creatorcontrib>Dohrmann, Clark R.</creatorcontrib><creatorcontrib>Aquino, Wilkins</creatorcontrib><title>Novel strategies for modal-based structural material identification</title><title>Mechanical systems and signal processing</title><description>•Modal-based methods for model calibration in structural dynamics.•Measured modal data to extract structural model parameters for complex problems.•Gradient-based optimization problems using eigenvalues and eigenvectors.•Mode Separation via Projection algorithm for problems with repeated eigenvalues.•Implementation in a massively parallel finite element structural dynamics framework.
In this work, we present modal-based methods for model calibration in structural dynamics, and address several key challenges in the solution of gradient-based optimization problems with eigenvalues and eigenvectors, including the solution of singular Helmholtz problems encountered in sensitivity calculations, non-differentiable objective functions caused by mode swapping during optimization, and cases with repeated eigenvalues. Unlike previous literature that relied on direct solution of the eigenvector adjoint equations, we present a parallel iterative domain decomposition strategy (Adjoint Computation via Modal Superposition with Truncation Augmentation) for the solution of the singular Helmholtz problems. For problems with repeated eigenvalues we present a novel Mode Separation via Projection algorithm, and in order to address mode swapping between inverse iterations we present a novel Injective mode ordering metric. We present the implementation of these methods in a massively parallel finite element framework with the ability to use measured modal data to extract unknown structural model parameters from large complex problems. A series of increasingly complex numerical examples are presented that demonstrate the implementation and performance of the methods in a massively parallel finite element framework [7,5], using gradient-based optimization techniques in the Rapid Optimization Library (ROL) [21].</description><subject>Algorithms</subject><subject>Domain decomposition methods</subject><subject>Eigenvalues</subject><subject>Eigenvector</subject><subject>Eigenvectors</subject><subject>Inverse methods</subject><subject>Iterative methods</subject><subject>Material-ID</subject><subject>Modal data</subject><subject>Mode superposition method</subject><subject>Mode swapping</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Structural dynamics</subject><subject>Structural models</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8Fz13z0abJwYMsfsGiFz2HmEwkpW3WJF3Yf29rPXt6h5n3nWEehK4J3hBM-G27OfYp7TcU07nTUFmfoBXBkpeEEn6KVlgIUTLa4HN0kVKLMZYV5iu0fQ0H6IqUo87w5SEVLsSiD1Z35adOYOfRaPIYdVf0kyf6qfAWhuydNzr7MFyiM6e7BFd_ukYfjw_v2-dy9_b0sr3flYY1PJdSYAeUC860qaHmYOqKWWK0dEayyhluSC1t5QSflRAiKKWEWkkswRyzNbpZ9u5j-B4hZdWGMQ7TSUUrLpio6qaZXGxxmRhSiuDUPvpex6MiWM20VKt-aamZllpoTam7JQXTAwcPUSXjYTBgfQSTlQ3-3_wPH7lz0g</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Bunting, Gregory</creator><creator>Miller, Scott T.</creator><creator>Walsh, Timothy F.</creator><creator>Dohrmann, Clark R.</creator><creator>Aquino, Wilkins</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0523-4602</orcidid></search><sort><creationdate>20210215</creationdate><title>Novel strategies for modal-based structural material identification</title><author>Bunting, Gregory ; Miller, Scott T. ; Walsh, Timothy F. ; Dohrmann, Clark R. ; Aquino, Wilkins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-980fe26863ac5e56ec543d1ca9fc934fc6c159d4f86159d111822212d91d10603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Domain decomposition methods</topic><topic>Eigenvalues</topic><topic>Eigenvector</topic><topic>Eigenvectors</topic><topic>Inverse methods</topic><topic>Iterative methods</topic><topic>Material-ID</topic><topic>Modal data</topic><topic>Mode superposition method</topic><topic>Mode swapping</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Structural dynamics</topic><topic>Structural models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bunting, Gregory</creatorcontrib><creatorcontrib>Miller, Scott T.</creatorcontrib><creatorcontrib>Walsh, Timothy F.</creatorcontrib><creatorcontrib>Dohrmann, Clark R.</creatorcontrib><creatorcontrib>Aquino, Wilkins</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bunting, Gregory</au><au>Miller, Scott T.</au><au>Walsh, Timothy F.</au><au>Dohrmann, Clark R.</au><au>Aquino, Wilkins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel strategies for modal-based structural material identification</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>149</volume><spage>107295</spage><pages>107295-</pages><artnum>107295</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Modal-based methods for model calibration in structural dynamics.•Measured modal data to extract structural model parameters for complex problems.•Gradient-based optimization problems using eigenvalues and eigenvectors.•Mode Separation via Projection algorithm for problems with repeated eigenvalues.•Implementation in a massively parallel finite element structural dynamics framework.
In this work, we present modal-based methods for model calibration in structural dynamics, and address several key challenges in the solution of gradient-based optimization problems with eigenvalues and eigenvectors, including the solution of singular Helmholtz problems encountered in sensitivity calculations, non-differentiable objective functions caused by mode swapping during optimization, and cases with repeated eigenvalues. Unlike previous literature that relied on direct solution of the eigenvector adjoint equations, we present a parallel iterative domain decomposition strategy (Adjoint Computation via Modal Superposition with Truncation Augmentation) for the solution of the singular Helmholtz problems. For problems with repeated eigenvalues we present a novel Mode Separation via Projection algorithm, and in order to address mode swapping between inverse iterations we present a novel Injective mode ordering metric. We present the implementation of these methods in a massively parallel finite element framework with the ability to use measured modal data to extract unknown structural model parameters from large complex problems. A series of increasingly complex numerical examples are presented that demonstrate the implementation and performance of the methods in a massively parallel finite element framework [7,5], using gradient-based optimization techniques in the Rapid Optimization Library (ROL) [21].</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2020.107295</doi><orcidid>https://orcid.org/0000-0002-0523-4602</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2021-02, Vol.149, p.107295, Article 107295 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_2468384577 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Domain decomposition methods Eigenvalues Eigenvector Eigenvectors Inverse methods Iterative methods Material-ID Modal data Mode superposition method Mode swapping Optimization Optimization techniques Structural dynamics Structural models |
title | Novel strategies for modal-based structural material identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20strategies%20for%20modal-based%20structural%20material%20identification&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Bunting,%20Gregory&rft.date=2021-02-15&rft.volume=149&rft.spage=107295&rft.pages=107295-&rft.artnum=107295&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2020.107295&rft_dat=%3Cproquest_cross%3E2468384577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468384577&rft_id=info:pmid/&rft_els_id=S0888327020306816&rfr_iscdi=true |