Topology optimization of two fluid heat exchangers

•Topology optimization of two fluids and one solid based on one design field.•Control of the minimum wall thickness separating the two fluids.•Heat transfer enhanced by up to 113% maintaining same pressure drop.•Organic features like microvillies observed in optimized heat exchangers. A method for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-12, Vol.163, p.120543, Article 120543
Hauptverfasser: Høghøj, Lukas Christian, Nørhave, Daniel Ruberg, Alexandersen, Joe, Sigmund, Ole, Andreasen, Casper Schousboe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120543
container_title International journal of heat and mass transfer
container_volume 163
creator Høghøj, Lukas Christian
Nørhave, Daniel Ruberg
Alexandersen, Joe
Sigmund, Ole
Andreasen, Casper Schousboe
description •Topology optimization of two fluids and one solid based on one design field.•Control of the minimum wall thickness separating the two fluids.•Heat transfer enhanced by up to 113% maintaining same pressure drop.•Organic features like microvillies observed in optimized heat exchangers. A method for density-based topology optimization of heat exchangers with two fluids is proposed. The goal of the optimization process is to maximize the heat transfer from one fluid to the other, under maximum pressure drop constraints for each of the fluids. A single design variable is used to describe the physical fields. The solid interface and the fluid domains are generated using an erosion-dilation based identification technique, which guarantees well-separated fluids, as well as a minimum wall thickness between them. Under the assumption of laminar steady flow, the two fluids are modelled separately, but in the entire computational domain using the Brinkman penalization technique for ensuring negligible velocities outside of the respective fluid subdomains. The heat transfer is modelled using the convection-diffusion equation, where the convection is driven by both fluid flows. A stabilized finite element discretization is used to solve the governing equations. Results are presented for two different problems: a two-dimensional case illustrating and verifying the methodology; and a three-dimensional case inspired by shell-and-tube heat exchangers. The optimized designs for both cases show an improved heat transfer compared to the baseline designs. For the shell-and-tube case, the full freedom topology optimization approach is shown to yield performance improvements of up to 113% under the same pressure drop.
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.120543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468384539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020334797</els_id><sourcerecordid>2468384539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-3e82e6e9332c4431038a9c34f4de963b4aec0c0ff0b0952ff5358c14609a151a3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD5HYsEnxK6m9A1U8hcSmrC3XGbeO2jjYLlC-Hkdhx4bVaDRX52oOQlcEzwgm9XU7c-0GdNrpGFPQXbQQZhTTfKa44uwITYiYy5ISIY_RBGMyLyUj-BSdxdgOK-b1BNGl7_3Wrw-F75PbuW-dnO8Kb4v06Qu73bumGGoK-DIb3a0hxHN0YvU2wsXvnKK3-7vl4rF8eX14Wty-lIZLnkoGgkINkjFqOM_NTGhpGLe8AVmzFddgsMHW4hWWFbW2YpUwhNdYalIRzabocuT2wb_vISbV-n3ocqWivBZM8IrJnLoZUyb4GANY1Qe30-GgCFaDKdWqv6bUYEqNpjLieURA_ubD5Ws0DjoDjQtgkmq8-z_sB8gHfXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468384539</pqid></control><display><type>article</type><title>Topology optimization of two fluid heat exchangers</title><source>Elsevier ScienceDirect Journals</source><creator>Høghøj, Lukas Christian ; Nørhave, Daniel Ruberg ; Alexandersen, Joe ; Sigmund, Ole ; Andreasen, Casper Schousboe</creator><creatorcontrib>Høghøj, Lukas Christian ; Nørhave, Daniel Ruberg ; Alexandersen, Joe ; Sigmund, Ole ; Andreasen, Casper Schousboe</creatorcontrib><description>•Topology optimization of two fluids and one solid based on one design field.•Control of the minimum wall thickness separating the two fluids.•Heat transfer enhanced by up to 113% maintaining same pressure drop.•Organic features like microvillies observed in optimized heat exchangers. A method for density-based topology optimization of heat exchangers with two fluids is proposed. The goal of the optimization process is to maximize the heat transfer from one fluid to the other, under maximum pressure drop constraints for each of the fluids. A single design variable is used to describe the physical fields. The solid interface and the fluid domains are generated using an erosion-dilation based identification technique, which guarantees well-separated fluids, as well as a minimum wall thickness between them. Under the assumption of laminar steady flow, the two fluids are modelled separately, but in the entire computational domain using the Brinkman penalization technique for ensuring negligible velocities outside of the respective fluid subdomains. The heat transfer is modelled using the convection-diffusion equation, where the convection is driven by both fluid flows. A stabilized finite element discretization is used to solve the governing equations. Results are presented for two different problems: a two-dimensional case illustrating and verifying the methodology; and a three-dimensional case inspired by shell-and-tube heat exchangers. The optimized designs for both cases show an improved heat transfer compared to the baseline designs. For the shell-and-tube case, the full freedom topology optimization approach is shown to yield performance improvements of up to 113% under the same pressure drop.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120543</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Convection-diffusion equation ; Domains ; Fluid flow ; Fluids ; Forced Convection ; Heat Exchanger ; Heat exchangers ; Heat transfer ; Interface identification ; Laminar flow ; Multiphysics optimization ; Optimization ; Pressure drop ; Steady flow ; Topology Optimization ; Tube heat exchangers ; Wall thickness</subject><ispartof>International journal of heat and mass transfer, 2020-12, Vol.163, p.120543, Article 120543</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-3e82e6e9332c4431038a9c34f4de963b4aec0c0ff0b0952ff5358c14609a151a3</citedby><cites>FETCH-LOGICAL-c494t-3e82e6e9332c4431038a9c34f4de963b4aec0c0ff0b0952ff5358c14609a151a3</cites><orcidid>0000-0002-0010-8105 ; 0000-0003-0338-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931020334797$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Høghøj, Lukas Christian</creatorcontrib><creatorcontrib>Nørhave, Daniel Ruberg</creatorcontrib><creatorcontrib>Alexandersen, Joe</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><creatorcontrib>Andreasen, Casper Schousboe</creatorcontrib><title>Topology optimization of two fluid heat exchangers</title><title>International journal of heat and mass transfer</title><description>•Topology optimization of two fluids and one solid based on one design field.•Control of the minimum wall thickness separating the two fluids.•Heat transfer enhanced by up to 113% maintaining same pressure drop.•Organic features like microvillies observed in optimized heat exchangers. A method for density-based topology optimization of heat exchangers with two fluids is proposed. The goal of the optimization process is to maximize the heat transfer from one fluid to the other, under maximum pressure drop constraints for each of the fluids. A single design variable is used to describe the physical fields. The solid interface and the fluid domains are generated using an erosion-dilation based identification technique, which guarantees well-separated fluids, as well as a minimum wall thickness between them. Under the assumption of laminar steady flow, the two fluids are modelled separately, but in the entire computational domain using the Brinkman penalization technique for ensuring negligible velocities outside of the respective fluid subdomains. The heat transfer is modelled using the convection-diffusion equation, where the convection is driven by both fluid flows. A stabilized finite element discretization is used to solve the governing equations. Results are presented for two different problems: a two-dimensional case illustrating and verifying the methodology; and a three-dimensional case inspired by shell-and-tube heat exchangers. The optimized designs for both cases show an improved heat transfer compared to the baseline designs. For the shell-and-tube case, the full freedom topology optimization approach is shown to yield performance improvements of up to 113% under the same pressure drop.</description><subject>Computational fluid dynamics</subject><subject>Convection-diffusion equation</subject><subject>Domains</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Forced Convection</subject><subject>Heat Exchanger</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Interface identification</subject><subject>Laminar flow</subject><subject>Multiphysics optimization</subject><subject>Optimization</subject><subject>Pressure drop</subject><subject>Steady flow</subject><subject>Topology Optimization</subject><subject>Tube heat exchangers</subject><subject>Wall thickness</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD5HYsEnxK6m9A1U8hcSmrC3XGbeO2jjYLlC-Hkdhx4bVaDRX52oOQlcEzwgm9XU7c-0GdNrpGFPQXbQQZhTTfKa44uwITYiYy5ISIY_RBGMyLyUj-BSdxdgOK-b1BNGl7_3Wrw-F75PbuW-dnO8Kb4v06Qu73bumGGoK-DIb3a0hxHN0YvU2wsXvnKK3-7vl4rF8eX14Wty-lIZLnkoGgkINkjFqOM_NTGhpGLe8AVmzFddgsMHW4hWWFbW2YpUwhNdYalIRzabocuT2wb_vISbV-n3ocqWivBZM8IrJnLoZUyb4GANY1Qe30-GgCFaDKdWqv6bUYEqNpjLieURA_ubD5Ws0DjoDjQtgkmq8-z_sB8gHfXI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Høghøj, Lukas Christian</creator><creator>Nørhave, Daniel Ruberg</creator><creator>Alexandersen, Joe</creator><creator>Sigmund, Ole</creator><creator>Andreasen, Casper Schousboe</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0010-8105</orcidid><orcidid>https://orcid.org/0000-0003-0338-9392</orcidid></search><sort><creationdate>202012</creationdate><title>Topology optimization of two fluid heat exchangers</title><author>Høghøj, Lukas Christian ; Nørhave, Daniel Ruberg ; Alexandersen, Joe ; Sigmund, Ole ; Andreasen, Casper Schousboe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-3e82e6e9332c4431038a9c34f4de963b4aec0c0ff0b0952ff5358c14609a151a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Convection-diffusion equation</topic><topic>Domains</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Forced Convection</topic><topic>Heat Exchanger</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Interface identification</topic><topic>Laminar flow</topic><topic>Multiphysics optimization</topic><topic>Optimization</topic><topic>Pressure drop</topic><topic>Steady flow</topic><topic>Topology Optimization</topic><topic>Tube heat exchangers</topic><topic>Wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Høghøj, Lukas Christian</creatorcontrib><creatorcontrib>Nørhave, Daniel Ruberg</creatorcontrib><creatorcontrib>Alexandersen, Joe</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><creatorcontrib>Andreasen, Casper Schousboe</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Høghøj, Lukas Christian</au><au>Nørhave, Daniel Ruberg</au><au>Alexandersen, Joe</au><au>Sigmund, Ole</au><au>Andreasen, Casper Schousboe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of two fluid heat exchangers</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-12</date><risdate>2020</risdate><volume>163</volume><spage>120543</spage><pages>120543-</pages><artnum>120543</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Topology optimization of two fluids and one solid based on one design field.•Control of the minimum wall thickness separating the two fluids.•Heat transfer enhanced by up to 113% maintaining same pressure drop.•Organic features like microvillies observed in optimized heat exchangers. A method for density-based topology optimization of heat exchangers with two fluids is proposed. The goal of the optimization process is to maximize the heat transfer from one fluid to the other, under maximum pressure drop constraints for each of the fluids. A single design variable is used to describe the physical fields. The solid interface and the fluid domains are generated using an erosion-dilation based identification technique, which guarantees well-separated fluids, as well as a minimum wall thickness between them. Under the assumption of laminar steady flow, the two fluids are modelled separately, but in the entire computational domain using the Brinkman penalization technique for ensuring negligible velocities outside of the respective fluid subdomains. The heat transfer is modelled using the convection-diffusion equation, where the convection is driven by both fluid flows. A stabilized finite element discretization is used to solve the governing equations. Results are presented for two different problems: a two-dimensional case illustrating and verifying the methodology; and a three-dimensional case inspired by shell-and-tube heat exchangers. The optimized designs for both cases show an improved heat transfer compared to the baseline designs. For the shell-and-tube case, the full freedom topology optimization approach is shown to yield performance improvements of up to 113% under the same pressure drop.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120543</doi><orcidid>https://orcid.org/0000-0002-0010-8105</orcidid><orcidid>https://orcid.org/0000-0003-0338-9392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-12, Vol.163, p.120543, Article 120543
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2468384539
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Convection-diffusion equation
Domains
Fluid flow
Fluids
Forced Convection
Heat Exchanger
Heat exchangers
Heat transfer
Interface identification
Laminar flow
Multiphysics optimization
Optimization
Pressure drop
Steady flow
Topology Optimization
Tube heat exchangers
Wall thickness
title Topology optimization of two fluid heat exchangers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20two%20fluid%20heat%20exchangers&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=H%C3%B8gh%C3%B8j,%20Lukas%20Christian&rft.date=2020-12&rft.volume=163&rft.spage=120543&rft.pages=120543-&rft.artnum=120543&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120543&rft_dat=%3Cproquest_cross%3E2468384539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468384539&rft_id=info:pmid/&rft_els_id=S0017931020334797&rfr_iscdi=true