Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid

•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-12, Vol.163, p.120420, Article 120420
Hauptverfasser: Fursenko, Roman V., Chudnovskii, Vladimir M., Minaev, Sergey S., Okajima, Junnosuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120420
container_title International journal of heat and mass transfer
container_volume 163
creator Fursenko, Roman V.
Chudnovskii, Vladimir M.
Minaev, Sergey S.
Okajima, Junnosuke
description •Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations. Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.120420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468384469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020333561</els_id><sourcerecordid>2468384469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</originalsourceid><addsrcrecordid>eNqNkE9PwzAMxSMEEmPwHSJx4dIRt13a3kATfzXEBc5RmjhrqrbZkgyJb0-mcePCybLe88_2I-QG2AIY8Nt-YfsOZRxlCNHLKRj0i5zlSc5ZmbMTMoO6arIc6uaUzBiDKmsKYOfkIoT-0LKSz8j0hqqTkw0jdYZ2dtPRLxycsvGb9hipcX6U0bqJShPRU0k3MtB237YDUuWGQW4D0gmlp7FDOlrlHTW2TVY7jugDamrTMB3sbm_1JTkzcgh49Vvn5PPx4WP1nK3fn15W9-tMFRWLWclb4HWBSgPnukVVKVZLKJaNgpaBMUs0XOocoOalBFa3dcm1bpZNhWAKWczJ9ZG79W63xxBF7_Z-SitFXiZyXZa8Sa67oysdHYJHI7bejtJ_C2DikLLoxd-UxSFlcUw5IV6PCEzffNmkBmVxUqitRxWFdvb_sB9YV5M4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468384469</pqid></control><display><type>article</type><title>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fursenko, Roman V. ; Chudnovskii, Vladimir M. ; Minaev, Sergey S. ; Okajima, Junnosuke</creator><creatorcontrib>Fursenko, Roman V. ; Chudnovskii, Vladimir M. ; Minaev, Sergey S. ; Okajima, Junnosuke</creatorcontrib><description>•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations. Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120420</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Broken symmetry ; Bubble collapse ; Bubbles ; Condensation ; High velocity cumulative jet ; Laser surgery ; Thickness ; Two-phase flow ; Vapors ; Velocity ; Velocity distribution ; Water flow</subject><ispartof>International journal of heat and mass transfer, 2020-12, Vol.163, p.120420, Article 120420</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</citedby><cites>FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</cites><orcidid>0000-0002-1152-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120420$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fursenko, Roman V.</creatorcontrib><creatorcontrib>Chudnovskii, Vladimir M.</creatorcontrib><creatorcontrib>Minaev, Sergey S.</creatorcontrib><creatorcontrib>Okajima, Junnosuke</creatorcontrib><title>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</title><title>International journal of heat and mass transfer</title><description>•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations. Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.</description><subject>Broken symmetry</subject><subject>Bubble collapse</subject><subject>Bubbles</subject><subject>Condensation</subject><subject>High velocity cumulative jet</subject><subject>Laser surgery</subject><subject>Thickness</subject><subject>Two-phase flow</subject><subject>Vapors</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Water flow</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwzAMxSMEEmPwHSJx4dIRt13a3kATfzXEBc5RmjhrqrbZkgyJb0-mcePCybLe88_2I-QG2AIY8Nt-YfsOZRxlCNHLKRj0i5zlSc5ZmbMTMoO6arIc6uaUzBiDKmsKYOfkIoT-0LKSz8j0hqqTkw0jdYZ2dtPRLxycsvGb9hipcX6U0bqJShPRU0k3MtB237YDUuWGQW4D0gmlp7FDOlrlHTW2TVY7jugDamrTMB3sbm_1JTkzcgh49Vvn5PPx4WP1nK3fn15W9-tMFRWLWclb4HWBSgPnukVVKVZLKJaNgpaBMUs0XOocoOalBFa3dcm1bpZNhWAKWczJ9ZG79W63xxBF7_Z-SitFXiZyXZa8Sa67oysdHYJHI7bejtJ_C2DikLLoxd-UxSFlcUw5IV6PCEzffNmkBmVxUqitRxWFdvb_sB9YV5M4</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fursenko, Roman V.</creator><creator>Chudnovskii, Vladimir M.</creator><creator>Minaev, Sergey S.</creator><creator>Okajima, Junnosuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1152-8981</orcidid></search><sort><creationdate>202012</creationdate><title>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</title><author>Fursenko, Roman V. ; Chudnovskii, Vladimir M. ; Minaev, Sergey S. ; Okajima, Junnosuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broken symmetry</topic><topic>Bubble collapse</topic><topic>Bubbles</topic><topic>Condensation</topic><topic>High velocity cumulative jet</topic><topic>Laser surgery</topic><topic>Thickness</topic><topic>Two-phase flow</topic><topic>Vapors</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fursenko, Roman V.</creatorcontrib><creatorcontrib>Chudnovskii, Vladimir M.</creatorcontrib><creatorcontrib>Minaev, Sergey S.</creatorcontrib><creatorcontrib>Okajima, Junnosuke</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fursenko, Roman V.</au><au>Chudnovskii, Vladimir M.</au><au>Minaev, Sergey S.</au><au>Okajima, Junnosuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-12</date><risdate>2020</risdate><volume>163</volume><spage>120420</spage><pages>120420-</pages><artnum>120420</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations. Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120420</doi><orcidid>https://orcid.org/0000-0002-1152-8981</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-12, Vol.163, p.120420, Article 120420
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2468384469
source Elsevier ScienceDirect Journals Complete
subjects Broken symmetry
Bubble collapse
Bubbles
Condensation
High velocity cumulative jet
Laser surgery
Thickness
Two-phase flow
Vapors
Velocity
Velocity distribution
Water flow
title Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20high%20velocity%20jet%20formation%20after%20a%20gas%20bubble%20collapse%20near%20the%20micro%20fiber%20immersed%20in%20a%20liquid&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Fursenko,%20Roman%20V.&rft.date=2020-12&rft.volume=163&rft.spage=120420&rft.pages=120420-&rft.artnum=120420&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120420&rft_dat=%3Cproquest_cross%3E2468384469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468384469&rft_id=info:pmid/&rft_els_id=S0017931020333561&rfr_iscdi=true