Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid
•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2020-12, Vol.163, p.120420, Article 120420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120420 |
container_title | International journal of heat and mass transfer |
container_volume | 163 |
creator | Fursenko, Roman V. Chudnovskii, Vladimir M. Minaev, Sergey S. Okajima, Junnosuke |
description | •Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations.
Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2020.120420 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2468384469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020333561</els_id><sourcerecordid>2468384469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</originalsourceid><addsrcrecordid>eNqNkE9PwzAMxSMEEmPwHSJx4dIRt13a3kATfzXEBc5RmjhrqrbZkgyJb0-mcePCybLe88_2I-QG2AIY8Nt-YfsOZRxlCNHLKRj0i5zlSc5ZmbMTMoO6arIc6uaUzBiDKmsKYOfkIoT-0LKSz8j0hqqTkw0jdYZ2dtPRLxycsvGb9hipcX6U0bqJShPRU0k3MtB237YDUuWGQW4D0gmlp7FDOlrlHTW2TVY7jugDamrTMB3sbm_1JTkzcgh49Vvn5PPx4WP1nK3fn15W9-tMFRWLWclb4HWBSgPnukVVKVZLKJaNgpaBMUs0XOocoOalBFa3dcm1bpZNhWAKWczJ9ZG79W63xxBF7_Z-SitFXiZyXZa8Sa67oysdHYJHI7bejtJ_C2DikLLoxd-UxSFlcUw5IV6PCEzffNmkBmVxUqitRxWFdvb_sB9YV5M4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468384469</pqid></control><display><type>article</type><title>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fursenko, Roman V. ; Chudnovskii, Vladimir M. ; Minaev, Sergey S. ; Okajima, Junnosuke</creator><creatorcontrib>Fursenko, Roman V. ; Chudnovskii, Vladimir M. ; Minaev, Sergey S. ; Okajima, Junnosuke</creatorcontrib><description>•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations.
Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120420</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Broken symmetry ; Bubble collapse ; Bubbles ; Condensation ; High velocity cumulative jet ; Laser surgery ; Thickness ; Two-phase flow ; Vapors ; Velocity ; Velocity distribution ; Water flow</subject><ispartof>International journal of heat and mass transfer, 2020-12, Vol.163, p.120420, Article 120420</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</citedby><cites>FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</cites><orcidid>0000-0002-1152-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120420$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fursenko, Roman V.</creatorcontrib><creatorcontrib>Chudnovskii, Vladimir M.</creatorcontrib><creatorcontrib>Minaev, Sergey S.</creatorcontrib><creatorcontrib>Okajima, Junnosuke</creatorcontrib><title>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</title><title>International journal of heat and mass transfer</title><description>•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations.
Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.</description><subject>Broken symmetry</subject><subject>Bubble collapse</subject><subject>Bubbles</subject><subject>Condensation</subject><subject>High velocity cumulative jet</subject><subject>Laser surgery</subject><subject>Thickness</subject><subject>Two-phase flow</subject><subject>Vapors</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Water flow</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwzAMxSMEEmPwHSJx4dIRt13a3kATfzXEBc5RmjhrqrbZkgyJb0-mcePCybLe88_2I-QG2AIY8Nt-YfsOZRxlCNHLKRj0i5zlSc5ZmbMTMoO6arIc6uaUzBiDKmsKYOfkIoT-0LKSz8j0hqqTkw0jdYZ2dtPRLxycsvGb9hipcX6U0bqJShPRU0k3MtB237YDUuWGQW4D0gmlp7FDOlrlHTW2TVY7jugDamrTMB3sbm_1JTkzcgh49Vvn5PPx4WP1nK3fn15W9-tMFRWLWclb4HWBSgPnukVVKVZLKJaNgpaBMUs0XOocoOalBFa3dcm1bpZNhWAKWczJ9ZG79W63xxBF7_Z-SitFXiZyXZa8Sa67oysdHYJHI7bejtJ_C2DikLLoxd-UxSFlcUw5IV6PCEzffNmkBmVxUqitRxWFdvb_sB9YV5M4</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fursenko, Roman V.</creator><creator>Chudnovskii, Vladimir M.</creator><creator>Minaev, Sergey S.</creator><creator>Okajima, Junnosuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1152-8981</orcidid></search><sort><creationdate>202012</creationdate><title>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</title><author>Fursenko, Roman V. ; Chudnovskii, Vladimir M. ; Minaev, Sergey S. ; Okajima, Junnosuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-46b1683ecd166dbec7c08a1359c1b01ff5ef6ad211864a108b846dd9597e1f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broken symmetry</topic><topic>Bubble collapse</topic><topic>Bubbles</topic><topic>Condensation</topic><topic>High velocity cumulative jet</topic><topic>Laser surgery</topic><topic>Thickness</topic><topic>Two-phase flow</topic><topic>Vapors</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fursenko, Roman V.</creatorcontrib><creatorcontrib>Chudnovskii, Vladimir M.</creatorcontrib><creatorcontrib>Minaev, Sergey S.</creatorcontrib><creatorcontrib>Okajima, Junnosuke</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fursenko, Roman V.</au><au>Chudnovskii, Vladimir M.</au><au>Minaev, Sergey S.</au><au>Okajima, Junnosuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-12</date><risdate>2020</risdate><volume>163</volume><spage>120420</spage><pages>120420-</pages><artnum>120420</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Vapor bubble shrinking near the fiber immersed in a liquid results in jet formation.•Jet is formed due to spherical symmetry breaking and collapse of converged flow.•Jet velocity depends on microfiber thickness.•Proposed mechanism explains previous experiments.•In medical applications/laser surgery such jets can destroy pathological formations.
Numerical simulations of the vapor bubble collapse near the micro fiber immersed in a subcooled liquid allow us to propose the mechanism of formation of high velocity liquid jet previously observed in experiments. It is shown that spherical symmetry breaking of the velocity field near the fiber creates axisymmetric radially converged water flow resulting in appearance of the cumulative jet. Numerical simulations demonstrate that physical mechanism of jet formation is mainly determined by bubble surface dynamic and is irrespective to the processes driving bubble shrinking. Dependency of the jet velocity on time as well as effect of fiber thickness and initial vapor bubble radius on jet intensity are studied. It is found that optimal fiber thickness at which the jet is the most powerful exists. This optimal value is not universal but depends on initial vapor bubble radius.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120420</doi><orcidid>https://orcid.org/0000-0002-1152-8981</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2020-12, Vol.163, p.120420, Article 120420 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2468384469 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Broken symmetry Bubble collapse Bubbles Condensation High velocity cumulative jet Laser surgery Thickness Two-phase flow Vapors Velocity Velocity distribution Water flow |
title | Mechanism of high velocity jet formation after a gas bubble collapse near the micro fiber immersed in a liquid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20high%20velocity%20jet%20formation%20after%20a%20gas%20bubble%20collapse%20near%20the%20micro%20fiber%20immersed%20in%20a%20liquid&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Fursenko,%20Roman%20V.&rft.date=2020-12&rft.volume=163&rft.spage=120420&rft.pages=120420-&rft.artnum=120420&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120420&rft_dat=%3Cproquest_cross%3E2468384469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468384469&rft_id=info:pmid/&rft_els_id=S0017931020333561&rfr_iscdi=true |