Embedding information reversibly in medical images for e-health

Embedding information in medical images is considered as one of the significant methods for safeguarding the integrity and authenticity of medical images besides providing security to electronic patient records (EPR). The conventional embedding methods deteriorate the perceptual quality of medical i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.39 (6), p.8389-8398
Hauptverfasser: Kamili, Asra, Fatima, Izat, Hassan, Muzamil, Parah, Shabir A., Vijaya Kumar, V., Ambati, L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8398
container_issue 6
container_start_page 8389
container_title Journal of intelligent & fuzzy systems
container_volume 39
creator Kamili, Asra
Fatima, Izat
Hassan, Muzamil
Parah, Shabir A.
Vijaya Kumar, V.
Ambati, L. S.
description Embedding information in medical images is considered as one of the significant methods for safeguarding the integrity and authenticity of medical images besides providing security to electronic patient records (EPR). The conventional embedding methods deteriorate the perceptual quality of medical images making them unsuitable for proper diagnosis. To preserve the perceptual quality of medical images reversible embedding is used. The reversible embedding schemes, however, have less embedding capacity. In this work, a reversible scheme based on histogram bin shifting and RGB plane concatenation has been proposed which offers high embedding capacity as well. We have exploited the fact that medical images, unlike general images, consist of a large number of peaks and zero points that can be employed for reversibly embedding the data. Reversibility ensures that original image restoration takes place after the extraction of embedded data, which is of great importance in medical images for proper diagnosis and treatment. We have used various subjective and objective image quality metrics for analyzing the scheme. The proposed scheme has been shown to provide a Peak Signal to Noise Ratio (PSNR) value of above 56 dB for an embedding capacity of 0.58 bits per pixel (bpp). The results obtained show that the performance of scheme presented is far better in comparison to the state-of-the-art.
doi_str_mv 10.3233/JIFS-189157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2467880175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467880175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4381ad712106bd979047d7771611b76e4b0f952dca25d871c18bd6e25773d9623</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4gKRWCKDx048zg5UtVBUiQWwtpzYaVPlp9gpUm_Ts3AyXIXVjEaf3rz3CLkF9iC4EI9vy8UHBZVDhmdkAgozqnKJ53FnMqXAU3lJrkLYMgaYcTYhT_O2cNbW3Tqpu6r3rRnqvku8-3E-1EVziOffY-tsXZomqVuzdiGJXOLoxplm2FyTi8o0wd38zyn5Wsw_Z6909f6ynD2vaMklDDQVCoxF4NFIYXPMWYoWEUECFChdWrAqz7gtDc-sQihBFVY6niEKm0supuRu1N35_nvvwqC3_d538aWOqVCpU6JI3Y9U6fsQvKv0zkfT_qCB6VNF-lSRHisSfx1AWCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467880175</pqid></control><display><type>article</type><title>Embedding information reversibly in medical images for e-health</title><source>Business Source Complete</source><creator>Kamili, Asra ; Fatima, Izat ; Hassan, Muzamil ; Parah, Shabir A. ; Vijaya Kumar, V. ; Ambati, L. S.</creator><contributor>Subramaniyaswamy, V. ; Kommers, Piet ; Piuri, Vincenzo ; Varadarajan, Vijayakumar</contributor><creatorcontrib>Kamili, Asra ; Fatima, Izat ; Hassan, Muzamil ; Parah, Shabir A. ; Vijaya Kumar, V. ; Ambati, L. S. ; Subramaniyaswamy, V. ; Kommers, Piet ; Piuri, Vincenzo ; Varadarajan, Vijayakumar</creatorcontrib><description>Embedding information in medical images is considered as one of the significant methods for safeguarding the integrity and authenticity of medical images besides providing security to electronic patient records (EPR). The conventional embedding methods deteriorate the perceptual quality of medical images making them unsuitable for proper diagnosis. To preserve the perceptual quality of medical images reversible embedding is used. The reversible embedding schemes, however, have less embedding capacity. In this work, a reversible scheme based on histogram bin shifting and RGB plane concatenation has been proposed which offers high embedding capacity as well. We have exploited the fact that medical images, unlike general images, consist of a large number of peaks and zero points that can be employed for reversibly embedding the data. Reversibility ensures that original image restoration takes place after the extraction of embedded data, which is of great importance in medical images for proper diagnosis and treatment. We have used various subjective and objective image quality metrics for analyzing the scheme. The proposed scheme has been shown to provide a Peak Signal to Noise Ratio (PSNR) value of above 56 dB for an embedding capacity of 0.58 bits per pixel (bpp). The results obtained show that the performance of scheme presented is far better in comparison to the state-of-the-art.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-189157</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Diagnosis ; Embedding ; Histograms ; Image quality ; Image restoration ; Medical imaging ; Signal to noise ratio</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.39 (6), p.8389-8398</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-4381ad712106bd979047d7771611b76e4b0f952dca25d871c18bd6e25773d9623</citedby><cites>FETCH-LOGICAL-c261t-4381ad712106bd979047d7771611b76e4b0f952dca25d871c18bd6e25773d9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Subramaniyaswamy, V.</contributor><contributor>Kommers, Piet</contributor><contributor>Piuri, Vincenzo</contributor><contributor>Varadarajan, Vijayakumar</contributor><creatorcontrib>Kamili, Asra</creatorcontrib><creatorcontrib>Fatima, Izat</creatorcontrib><creatorcontrib>Hassan, Muzamil</creatorcontrib><creatorcontrib>Parah, Shabir A.</creatorcontrib><creatorcontrib>Vijaya Kumar, V.</creatorcontrib><creatorcontrib>Ambati, L. S.</creatorcontrib><title>Embedding information reversibly in medical images for e-health</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Embedding information in medical images is considered as one of the significant methods for safeguarding the integrity and authenticity of medical images besides providing security to electronic patient records (EPR). The conventional embedding methods deteriorate the perceptual quality of medical images making them unsuitable for proper diagnosis. To preserve the perceptual quality of medical images reversible embedding is used. The reversible embedding schemes, however, have less embedding capacity. In this work, a reversible scheme based on histogram bin shifting and RGB plane concatenation has been proposed which offers high embedding capacity as well. We have exploited the fact that medical images, unlike general images, consist of a large number of peaks and zero points that can be employed for reversibly embedding the data. Reversibility ensures that original image restoration takes place after the extraction of embedded data, which is of great importance in medical images for proper diagnosis and treatment. We have used various subjective and objective image quality metrics for analyzing the scheme. The proposed scheme has been shown to provide a Peak Signal to Noise Ratio (PSNR) value of above 56 dB for an embedding capacity of 0.58 bits per pixel (bpp). The results obtained show that the performance of scheme presented is far better in comparison to the state-of-the-art.</description><subject>Diagnosis</subject><subject>Embedding</subject><subject>Histograms</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Medical imaging</subject><subject>Signal to noise ratio</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4gKRWCKDx048zg5UtVBUiQWwtpzYaVPlp9gpUm_Ts3AyXIXVjEaf3rz3CLkF9iC4EI9vy8UHBZVDhmdkAgozqnKJ53FnMqXAU3lJrkLYMgaYcTYhT_O2cNbW3Tqpu6r3rRnqvku8-3E-1EVziOffY-tsXZomqVuzdiGJXOLoxplm2FyTi8o0wd38zyn5Wsw_Z6909f6ynD2vaMklDDQVCoxF4NFIYXPMWYoWEUECFChdWrAqz7gtDc-sQihBFVY6niEKm0supuRu1N35_nvvwqC3_d538aWOqVCpU6JI3Y9U6fsQvKv0zkfT_qCB6VNF-lSRHisSfx1AWCA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Kamili, Asra</creator><creator>Fatima, Izat</creator><creator>Hassan, Muzamil</creator><creator>Parah, Shabir A.</creator><creator>Vijaya Kumar, V.</creator><creator>Ambati, L. S.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Embedding information reversibly in medical images for e-health</title><author>Kamili, Asra ; Fatima, Izat ; Hassan, Muzamil ; Parah, Shabir A. ; Vijaya Kumar, V. ; Ambati, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4381ad712106bd979047d7771611b76e4b0f952dca25d871c18bd6e25773d9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diagnosis</topic><topic>Embedding</topic><topic>Histograms</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Medical imaging</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamili, Asra</creatorcontrib><creatorcontrib>Fatima, Izat</creatorcontrib><creatorcontrib>Hassan, Muzamil</creatorcontrib><creatorcontrib>Parah, Shabir A.</creatorcontrib><creatorcontrib>Vijaya Kumar, V.</creatorcontrib><creatorcontrib>Ambati, L. S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamili, Asra</au><au>Fatima, Izat</au><au>Hassan, Muzamil</au><au>Parah, Shabir A.</au><au>Vijaya Kumar, V.</au><au>Ambati, L. S.</au><au>Subramaniyaswamy, V.</au><au>Kommers, Piet</au><au>Piuri, Vincenzo</au><au>Varadarajan, Vijayakumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding information reversibly in medical images for e-health</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>8389</spage><epage>8398</epage><pages>8389-8398</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Embedding information in medical images is considered as one of the significant methods for safeguarding the integrity and authenticity of medical images besides providing security to electronic patient records (EPR). The conventional embedding methods deteriorate the perceptual quality of medical images making them unsuitable for proper diagnosis. To preserve the perceptual quality of medical images reversible embedding is used. The reversible embedding schemes, however, have less embedding capacity. In this work, a reversible scheme based on histogram bin shifting and RGB plane concatenation has been proposed which offers high embedding capacity as well. We have exploited the fact that medical images, unlike general images, consist of a large number of peaks and zero points that can be employed for reversibly embedding the data. Reversibility ensures that original image restoration takes place after the extraction of embedded data, which is of great importance in medical images for proper diagnosis and treatment. We have used various subjective and objective image quality metrics for analyzing the scheme. The proposed scheme has been shown to provide a Peak Signal to Noise Ratio (PSNR) value of above 56 dB for an embedding capacity of 0.58 bits per pixel (bpp). The results obtained show that the performance of scheme presented is far better in comparison to the state-of-the-art.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-189157</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.39 (6), p.8389-8398
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2467880175
source Business Source Complete
subjects Diagnosis
Embedding
Histograms
Image quality
Image restoration
Medical imaging
Signal to noise ratio
title Embedding information reversibly in medical images for e-health
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20information%20reversibly%20in%C2%A0medical%20images%20for%20e-health&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Kamili,%20Asra&rft.date=2020-01-01&rft.volume=39&rft.issue=6&rft.spage=8389&rft.epage=8398&rft.pages=8389-8398&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-189157&rft_dat=%3Cproquest_cross%3E2467880175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467880175&rft_id=info:pmid/&rfr_iscdi=true